扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综述(215~229)基于石墨烯光催化剂研究进展

敏世雄 吕功煊

敏世雄, 吕功煊. 综述(215~229)基于石墨烯光催化剂研究进展[J]. 分析测试技术与仪器, 2014, (4): 215-229.
引用本文: 敏世雄, 吕功煊. 综述(215~229)基于石墨烯光催化剂研究进展[J]. 分析测试技术与仪器, 2014, (4): 215-229.
MIN Shi-xiong, LU Gong-xuan. Advance in Photocatalyst Based on Graphene[J]. Analysis and Testing Technology and Instruments, 2014, (4): 215-229.
Citation: MIN Shi-xiong, LU Gong-xuan. Advance in Photocatalyst Based on Graphene[J]. Analysis and Testing Technology and Instruments, 2014, (4): 215-229.

综述(215~229)基于石墨烯光催化剂研究进展

Advance in Photocatalyst Based on Graphene

  • 摘要: 综述了新型二维碳材料石墨烯(Graphene)在光催化研究中的主要进展. 重点讨论了以分解水制氢的研究体系发展和基于石墨烯为电子受体及传递介质的新型、高效的光敏化和半导体光催化制氢体系(催化剂)的构建,也对石墨烯在促进光诱导电荷分离和迁移过程中的作用机制进行了讨论.
  • Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chem Soc Rev, 2012, 41:782-796.
    Huang X, Qi X Y, Boeyab F, et al. Graphene-based composites[J]. Chem Soc Rev, 2012, 41:666-686.
    An X Q, Yu J M. Graphene-based photocatalytic composites[J]. RSC Advances, 2011, 1: 1 426-1 434.
    蔡莉, 张姝. 尿素为氮源N-TiO2的制备、表征及光催化性能[J]. 分子催化, 2012,26:184-191.
    张文治, 张秀丽, 李莉,等. CTAB作用下纳米复合材料ZnO-TiO2制备与多模式光催化降解罗丹明B[J]. 分子催化, 2013, 27: 474-482.
    李新玉, 方艳芬, 熊世威, 等. 黄应平不同溴源制备铁掺杂BiOBr及其可见光光催化活性研究[J]. 分子催化, 2013, 27: 575-584.
    谢艳招, 吴松辉, 赵林, 等. 在Pt/TiO2上光催化降解污水中的对氟苯甲酸[J]. 分子催化, 2012, 26: 449-455.
    蔡莉, 张姝, 杨飞, 等. 树叶为模板制备网状TiO2和Fex/TiO2及光催化活性研究[J].分子催化, 2012, 26: 347-355.
    贺学智, 李炳杰, 吴志坚, 等. 层状双金属氢氧化物Zn(Cu)/Al-LDHs的制备及其光催化还原二氧化碳的研究[J]. 分子催化, 2013, 27: 70-75.
    因博, 龙东辉, 徐伟, 等. 板式纳米碳纤维负载二氧化钛光催化复合材料的制备及降解甲基橙的研究[J]. 分子催化, 2012, 26: 442-448.
    周鹏, 赵成坚, 董文平, 等. 高分子修饰Pt/ZnS-CdS/SiO2催化剂表面官能团调变与光催化制氢活性关系的研究[J]. 分子催化, 2012, 26: 265-275.
    孙婧, 蒋文建, 张桂琴, 等. 微波助离子液体中锌和氮共掺杂TiO2催化剂的制备及微波强化光催化活性[J]. 分子催化, 2013, 27: 566-574.
    朱力校, 赵志换, 岳学勇, 等. 一步法制备银-硫化银负载多孔TiO2及其光催化和抗菌性能[J]. 分子催化, 2013, 27: 467-473.
    封煜, 刘新勇, 江治, 等. TiO2负载Pt对光催化去除低浓度NO性能的影响. 分子催化, 2013, 27: 76-82.
    胡金山, 王欢, 刘利, 等. 高效Ag@ AgBr等离子体光催化剂的制备及可见光活性研究[J]. 分子催化, 2013, 27: 452-458.
    李波, 吕功煊. 不同染料共敏化TiO2可见光分解水产氢性能研究--染料结构相似性与双重促进效应[J], 分子催化, 2013, 27: 181-191.
    李芬芬, 王征, 杨成, 等. Cu/S-TiO2光催化剂的制备及其可见光催化性能[J]. 分子催化, 2012, 26: 174-183.
    彭绍琴, 刘晓燕, 丁敏, 等. 复合光催化剂CdS-Pt/TiO2制备及可见光光解海水制氢性能[J]. 分子催化, 2013, 27: 459-466.
    安伟佳, 崔文权, 刘利, 等. 梁英华卤氧化铋光催化剂的复合改性[J].分子催化, 2013, 27: 483-492.
    胡蕾, 叶芝祥, 卢远刚, 等. BiVO4/TiO2复合光催化剂的制备及可见光降解腐殖酸[J]. 分子催化, 2013, 27:377-384.
    Wang W D, Serp P, Kalck P, et al. Preparation and characterization of nanostructured MWCNT-TiO2 composite Materials for photocatalytic water treatment applications[J]. Mater Res Bull, 2008, 43: 958-967.
    Wang W D, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method[J]. J Mo Catal A Chem, 2005, 235: 194-199.
    Wang W D, Serp P, Kalck P, et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J]. Appl Catal A Gen, 2005, 56: 305-312.
    Ou Y, Lin J, Fang S, et al. MWNT-TiO2:Ni composite catalyst: a new class of catalyst for photocatalytic H2 evolution from water under visible light illumination[J]. Chem Phys Lett, 2006, 429: 199-203.
    Oh W C, Ko W B. Characterization and photonic properties for the Pt-fullerene/TiO2 composites derived from titanium (IV) n -butoxide and C60[J]. J Ind Eng Chem, 2009, 15: 791-797.
    Krishna V, Noguchi N, Koopman B, et al. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes[J]. J Colloid Interface Sc, 2006, 304: 166-171.
    Mu S, Long Y Z, Kang S Z, et al. Surface modification of TiO2 nanoparticles with a C60 derivative and enhanced photocatalytic activity for the reduction of aqueous Cr(VI) ions[J]. Catal Commun, 2010, 11: 741-744.
    Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95: 69-96.
    Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems[J]. J Photobiol Photochem C Photochem Rev, 2008, 9: 1-12.
    Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1995, 95: 735-758.
    Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J Photobiol Photochem C Photochem Rev, 2000, 1: 1-21.
    Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2-New photochemical processes[J]. Chem Rev, 2006, 106: 4 428-4 453.
    Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chem Rev, 2007, 107: 2 891-2 959.
    Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4: 380-386.
    Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide[J]. Nano Lett, 2010, 10: 577-583.
    Kamat P V. Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. J Phys Chem Lett, 2010, 1: 520-527.
    Ng Y H, Lightcap I V, Goodwin K, et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films[J]. J Phys Chem Lett, 2010, 1: 2 222-2 227.
    Xu T G, Zhang L W, Cheng H Y, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Appl Catal B Environ,2011, 101: 382-387.
    Liang Y Y, Wang H L, Casalongue S H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials[J]. Nano Res, 2010, 3: 701-705.
    Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J]. J Phys Chem C, 2009, 113: 20 214-20 220.
    Chen C, Cai W M, Long M C, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction[J]. ACS Nano, 2010, 4: 6 425-6 432.
    Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials[J]. ACS Nano, 2010, 4:7 303-7 314.
    Zhang Y H, Tang Z R, Fu X Z, et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube[J]. ACS Nano, 2011, 5:7 426-7 435.
    Fu Y S, Wang X. Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation[J]. Ind Eng Chem Res, 2011, 50: 7 210-7 218.
    Bai X J, Wang L, Zhu Y F. Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization[J]. ACS Catal, 2012, 2:2 769-2 778.
    Pan S G, Liu X H. CdS-graphene nanocomposite:synthesis, adsorption kinetics and high photocatalytic performance under visible light irradiation[J]. New J Chem, 2012, 36: 1 781-1 787.
    Gao Z Y, Liu N, Wu D P, et al. Graphene-CdS composite, synthesis and enhanced photocatalytic activity[J]. Appl Surf Sci, 2012, 258:2 473-2 478.
    Oh W C, Chen M L, Cho K, et al. Synthesis of graphene-CdSe composite by a simple hydrothermal method and its photocatalytic degradation of organic dyes[J]. Chin J Catal, 2011, 32: 1 577-1 583.
    Zhang X F, Quan X, Chen S, et al. Constructing graphene/InNbO4 composite with excellent adsorptivity and charge separation performance for enhanced visible-light-driven photocatalytic ability[J]. Appl Catal B Environ, 2011, 105:237-242.
    Fu Y S, Sun X Q, Wang X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation[J]. Mater Chem Phys, 2011, 131: 325-330.
    Zhou F, Shi R, Zhu Y F. Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization[J]. J Mol Catal A Chem,2011, 340:77-82.
    Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite[J]. Phys Chem Chem Phys, 2011, 13:2 887-2 893.
    Zhang H, Fan X F, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light[J]. Environ Sci Technol, 2011,45:5 731-5 736.
    Zhu M S, Chen P L, Liu M H. Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions: a comparison of sunlight energized plasmonic photocatalytic activity[J]. Langmuir, 2012, 28:3 385-3 390.
    Liao G Z, Chen S, Quan X, et al. Graphene oxide modified g -C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation[J]. J Mater Chem, 2012, 22:2 721-2 726.
    Liu L, Liu J C, Sun D D L. Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification[J]. Catal Sci Technol,2012, 2: 2 525-2 532.
    Xiong Z G, Zhang L L, Ma J Z, et al. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation[J]. Chem Commun, 2010, 46: 6 099-6 101.
    Zhang L L, Xiong Z G, Zhao X S. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation[J]. ACS Nano, 2010, 4:7 030-7 036.
    吴聪萍, 周勇, 邹志刚. 光催化还原CO2的研究现状和发展前景[R]. 催化学报, 2011, 32: 1565-1 572.
    Liang Y T, Vijayan B K, Gray K A, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Lett, 2011, 11: 2 865-2 870.
    Hsu H C, Shown I, Wei H Y, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion[J]. Nanoscale, 2013, 5: 262-268.
    Zhang N, Zhang Y H, Pan X Y, et al. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions[J]. J Phys Chem C, 2011, 115: 23 501-23 511.
    Zhang N, Zhang Y H, Pan X Y, et al. Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation[J]. J Phys Chem C, 2012, 116: 18 023-18 031.
    Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. J Phys Chem Lett, 2010, 1: 2 607-2 612.
    Hou Y, Zuo F, Dagg A, et al. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1- x Mo x O4 core/shell heterojunction array for efficient photoelectrochemical water splitting[J]. Nano Lett, 2012, 12:6 464-6 473.
    Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. J Mater Chem, 2010, 20:2 801-2 806.
    Fan W Q, Lai Q H, Zhang Q H, et al. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution[J]. J Phys Chem C, 2011, 115:10 694-10 701.
    Xiang Q J, Yu J G, Jaroniec M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011, 3:3 670-3 678.
    Jiang B J, Tian C G, Pan Q J, et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets[J]. J Phys Chem C, 2011,115: 23 718-23 725.
    Wang W S, Wang D H, Qu W G, et al. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity[J]. J Phys Chem C, 2012,116:19 893-19 901.
    Park Y, Kang S H, Choi W. Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary Co-catalyst for photocatalytic solar conversion[J]. Phys Chem Chem Phys, 2011,13:9 425-9 431.
    Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution-MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc, 2005, 127:5 308-5 309.
    Zong X, Yan H J, Wu G P, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. J Am Chem Soc, 2008,130:7 176-7 177.
    Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011,133:7 296-7 299.
    Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. J Am Chem S oc,2011, 134:6 575-6 578.
    Lv X J, Zhou S X, Zhang C, et al. Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting[J]. J Mater Chem, 2012, 22:18 542-18 549.
    敏世雄, 吕功煊. CdS/石墨烯复合材料的制备及其可见光催化分解水产氢性能[J].物理化学学报, 2011, 27: 2 178-2 184.
    Li Q, Guo B D, Yu J G, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. J Am Chem Soc, 2011,133:10 878-10 884.
    Zhang J, Yu J G, Jaroniec M, et al. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J]. Nano Lett, 2012, 12:4 584-4 589.
    Jia L, Wang D H, Huang Y X, et al. Highly durable N -doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation[J]. J Phys Chem C, 2011,115:11 466-11 473.
    Ye A H, Fan W Q, Zhang Q H, et al. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation[J]. Catal Sci Technol, 2012,2:969-978.
    Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J Phys Chem C, 2011,115:7 355-7 363.
    Mukherji A, Seger B, Lu G Q, et al. Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production[J]. ACS Nano, 2011,5: 3 483-3 492.
    Iwase A, Ng Y H, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light[J]. J Am Chem Soc, 2011,133: 11 054-11 057.
    Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Adv Funct Mater, 2010, 20: 2 255-2 262.
    Yeh T F, Chan F F, Hsieh C T, et al. Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide[J]. J Phys Chem C, 2011,115:22 587-22 597.
  • 加载中
计量
  • 文章访问数:  1953
  • HTML全文浏览量:  50
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-01-08

目录

    /

    返回文章
    返回