扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分析测试新成果(160~168)金属吸附剂用于去除血清蛋白及核苷检测

王悦 刘晓燕 张海霞

王悦, 刘晓燕, 张海霞. 分析测试新成果(160~168)金属吸附剂用于去除血清蛋白及核苷检测[J]. 分析测试技术与仪器, 2020, 26(3): 160-168. doi: 10.16495/j.1006-3757.2020.03.002
引用本文: 王悦, 刘晓燕, 张海霞. 分析测试新成果(160~168)金属吸附剂用于去除血清蛋白及核苷检测[J]. 分析测试技术与仪器, 2020, 26(3): 160-168. doi: 10.16495/j.1006-3757.2020.03.002
WANG Yue, LIU Xiao-yan, ZHANG Hai-xia. Removal of Serum Protein and Detection of Nucleosides by Metal Adsorbent[J]. Analysis and Testing Technology and Instruments, 2020, 26(3): 160-168. doi: 10.16495/j.1006-3757.2020.03.002
Citation: WANG Yue, LIU Xiao-yan, ZHANG Hai-xia. Removal of Serum Protein and Detection of Nucleosides by Metal Adsorbent[J]. Analysis and Testing Technology and Instruments, 2020, 26(3): 160-168. doi: 10.16495/j.1006-3757.2020.03.002

分析测试新成果(160~168)金属吸附剂用于去除血清蛋白及核苷检测

doi: 10.16495/j.1006-3757.2020.03.002
详细信息
    作者简介:

    王悦(1995-), 女, 硕士, 主要从事分离科学研究工作, E-mail:ywang2017@lzu.edu.cn

    通讯作者:

    张海霞(1970-),女,教授,《分析测试技术与仪器》编委,主要从事样品前处理研究工作,E-mail:zhanghx@lzu.edu.cn

  • 中图分类号: 0657.7

Removal of Serum Protein and Detection of Nucleosides by Metal Adsorbent

  • 摘要: 利用多糖与金属离子复合制备了一种高效的蛋白质吸附剂.海藻酸钠和羧甲基纤维素钠是两种富含羟基和羧基的多糖, 具有较强的金属亲和性.将其用钙离子交联后制备成金属-多糖复合材料, 进一步修饰铜离子, 得到蛋白质吸附剂.吸附剂对富含组氨酸的牛血红蛋白的吸附量可以达到33 g/g, 对少量组氨酸的牛血清白蛋白的吸附量也可以达到9.8 g/g.蛋白质吸附剂对人血血清进行两次吸附后, 可以去除其中98%的蛋白, 能够满足人血血清中核苷类物质的直接色谱进样检测.
  • 图  1  样品制备以及蛋白质吸附和核苷检测过程

    Figure  1.  Sample preparation, protein adsorption and nucleoside detection process

    图  2  (a) SA-Na, CMC-Na, SA-Ca/CMC-Ca, SA-Ca/CMC-Ca@Cu2+的红外光谱图,(b) SA-Ca/CMC-Ca@Cu2+材料表面Zeta电势

    Figure  2.  (a) FT-IR spectra of SA-Na, CMC-Na, SA-Ca/CMC-Ca and SA-Ca/CMC-Ca@Cu2+ (b) surface Zeta potential of SA-Ca/CMC-Ca@Cu2+

    图  3  SA-Ca/CMC-Ca (a, c)和SA-Ca/CMC-Ca@Cu2+ (b, d)的SEM和TEM图

    Figure  3.  SEM and TEM images of SA-Ca/CMC-Ca (a, c) and SA-Ca/CMC-Ca@Cu2+ (b, d)

    图  4  SA-Na/CMC-Na在不同比例下对Cu2+的吸附量

    Figure  4.  Adsorption capacities of Cu2+ by SA-Na/CMC-Na in different ratios

    图  5  SA-Ca/CMC-Ca@Cu2+对BHb、BSA、LYZ的吸附曲线和SA-Ca/CMC-Ca对BHb的吸附曲线

    Figure  5.  Adsorption curves of SA-Ca/CMC-Ca@Cu2+ to BHb, BSA, LYZ and SA-Ca/CMC-Ca to BHb

    图  6  SA-Ca/CMC-Ca@Cu2+对BHb吸附的(a)准一级模型拟合曲线和(b)准二级模型拟合曲线

    Figure  6.  (a) Pseudo-first-order and (b) pseudo-second-order model curves of BHb adsorption by SA-Ca/CMC-Ca@Cu2+

    图  7  SA-Ca/CMC-Ca@Cu2+材料对BHb吸附的Qe-Ce

    Figure  7.  Qe-Ce curve of BHb adsorption by SA-Ca/CMC-Ca@Cu2+

    图  8  SA-Ca/CMC-Ca@Cu2+材料对BHb吸附的(a) Langmuir等温吸附方程和(b) Freundlich吸附等温方程

    Figure  8.  (a) Langmuir and (b) Freundlich adsorption isotherm equations of SA-Ca/CMC-Ca@Cu2+ material for BHb adsorption

    图  9  4种核苷的结构图

    Figure  9.  Structures of four nucleosides

    图  10  不同pH条件下四种核苷被SA-Ca/CMC-Ca@ Cu2+吸附前后上清液的色谱图

    Figure  10.  Chromatograms of supernatant before/after adsorption of four nucleosides by SA-Ca/CMC-Ca@Cu2+ under different pH conditions

    图  11  SA-Ca/CMC-Ca@Cu2+对4种核苷加标样品处理前后的(a)液相谱图及(b)回收率

    Figure  11.  (a) Chromatograms and (b) recovery ratios of four nucleoside spiked samples before/ after adsorption by SA-Ca/CMC-Ca@Cu2+

    表  1  准一级动力学模型、准二级动力学模型相关参数值

    Table  1.   Relative parameters of pseudo-first-order and pseudo-second-order kinetic models

    蛋白质 准一级 准二级
    Qeb/(mg/g) k1/(min-1) R12 Qeb/(mg/g) k1/(min-1) R22
    BHb 51 286.1 0.031 24 0.902 3 74 934.4 2.03×10-7 0.784 7
    下载: 导出CSV

    表  2  与文献中报道材料对BHb吸附量的比较

    Table  2.   Comparison of BHb adsorption capacity of new material and those reported in reference

    吸附剂 吸附容量/(mg/g) 吸附时间
    Cu-IDA-silica-coatedFe3O4[25] 418.6 5 h
    Fe3O4@PVBC@IDA-Ni[26] 1 988 1 h
    CuFe2O4MNCs[13] 4 175 10 min
    SA-Ca/CMC-Ca@Cu2+(this work) 33 000 50 min
    下载: 导出CSV

    表  3  Langmuir等温吸附模型和Freundlich等温吸附模型的相关参数值

    Table  3.   Relative parameters of Langmuir and Freundlich adsorption isotherm models

    蛋白质 Langmuir Freundlich
    Qm/(mg/g) KL/(L/mg) R2 Kf/(L/mg) n R2
    BHb 0.507 6×106 4.92×10-6 0.177 9 2.896 1.022 0.996 5
    下载: 导出CSV

    表  4  实际血清样品中4种核苷的质量浓度

    Table  4.   Concentrations of four nucleosides in actual serum samples /(μg/mL)

    胞苷 尿苷 肌苷 胸苷
    血清样品1 0.03 0.23 0.17 n.a.
    血清样品2 0.02 0.26 0.21 n.a.
    下载: 导出CSV
  • [1] Agranoff D. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum[J]. The Lancet, 2006, 368(9540): 1012-1021. doi: 10.1016/S0140-6736(06)69342-2
    [2] Ray S. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins[J]. Nature medicine, 2007, 13(11): 1359-1362. doi: 10.1038/nm1653
    [3] Ahmed N. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum[J]. Proteomics, 2003, 3(10): 1980-1987. doi: 10.1002/pmic.200300465
    [4] Burgess R R. Advances in gentle immunoaffinity chromatography[J]. Current Opinion in Biotechnology, 2002, 13(4): 304-308. doi: 10.1016/S0958-1669(02)00340-3
    [5] Baussant T. Effective depletion of albumin using a new peptide-based affinity medium[J]. Proteomics, 2005, 5(4): 973-977. doi: 10.1002/pmic.200401065
    [6] Madera M. High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography B, 2007, 845(1): 121-137. doi: 10.1016/j.jchromb.2006.07.067
    [7] Chen Y Y. A modified protein precipitation procedure for efficient removal of albumin from serum[J]. Electrophoresis, 2005, 26(11): 2117-2127. doi: 10.1002/elps.200410381
    [8] Chen F. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 718-725. doi: 10.1039/C5CP04218F
    [9] Li S. Surface-imprinted nanoparticles prepared with a his-tag-anchored epitope as the template[J]. Analytical Chemistry, 2015, 87(9): 4617-4620. doi: 10.1021/ac5047246
    [10] Rothemund D L. Depletion of the highly abundant protein albumin from human plasma using the Gradiflow[J]. Proteomics, 2003, 3(3): 279-287. doi: 10.1002/pmic.200390041
    [11] Zhang M. Preparation of IDA-Cu functionalized core-satellite Fe3O4/polydopamine/Au magnetic nanocom- posites and their application for depletion of abundant protein in bovine blood[J]. Journal of Materials Chemistry, 2010, 20(47): 10696-10704. doi: 10.1039/c0jm01336f
    [12] Zhang Y. Facile synthesis of sea urchin-like magnetic copper silicate hollow spheres for efficient removal of hemoglobin in human blood[J]. Journal of Alloys and Compounds, 2017, 695: 3256-3266. doi: 10.1016/j.jallcom.2016.11.239
    [13] Zheng J. One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins[J]. Journal of Materials Chemistry B, 2014, 2(37): 6207-6214. doi: 10.1039/C4TB00986J
    [14] Ding C. Facile synthesis of copper(Ⅱ)-decorated magnetic particles for selective removal of hemoglobin from blood samples[J]. Journal of Chromatography A, 2015, 1424: 18-26. doi: 10.1016/j.chroma.2015.11.004
    [15] Baran N Y. Efficient adsorption of hemoglobin from aqueous solutions by hybrid monolithic cryogel column[J]. Materials Science and Engineering: C, 2017, 73: 15-20. doi: 10.1016/j.msec.2016.12.036
    [16] Gao R. Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin[J]. Talanta, 2016, 150: 46-53. doi: 10.1016/j.talanta.2015.12.017
    [17] Jian G. Click chemistry: a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples[J]. Nanoscale, 2012, 4(20): 6336-6342. doi: 10.1039/c2nr31430d
    [18] Xie H.-Y. Fe3O4/Au Core/Shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4825-4830. doi: 10.1021/jp910753f
    [19] Zhang Y. Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine- rich proteins[J]. Acs Applied Materials & Interfaces, 2014, 6(11): 8836-8844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd6e7506345af5722177b832f96ed0a7
    [20] Kim S H. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site- specific fluorophore labeling[J]. Journal of the American Chemical Society, 2007, 129(43): 13254-13264. doi: 10.1021/ja074443f
    [21] Wang Y. Synthesis of hierarchical nickel anchored on Fe3O4@SiO2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood[J]. New Journal of Chemistry, 2015, 39(6): 4876-4881. doi: 10.1039/C5NJ00241A
    [22] Zhang M. Preparation and characterization of iminodiacetic acid-functionalized magnetic nanopar- ticles and its selective removal of bovine hemoglobin[J]. Nanotechnology, 2011, 22(6): 065705. doi: 10.1088/0957-4484/22/6/065705
    [23] Zheng J. Preparation of magnetic metal-organic framework nanocomposites for highly specific separation of histidine-rich proteins[J]. Journal of Materials Chemistry B, 2015, 3(10): 2185-2191. doi: 10.1039/C4TB02007C
    [24] Zhao X. Kinetic studies on the adsorption of Cu (ll) onto alginate-carboxymethyl cellulose membrance[C]. 2016 3rd International Conference on Mechatronics and Information Technology, Atlantis Press.
    [25] Zhang M. Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood[J]. Chemistry-An Asian Journal, 2010, 5(6): 1332-1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e42875bdd530e55668aa7df9aa20062c
    [26] Cao J. Facile synthesis of a Ni (ii)-immobilized core-shell magnetic nanocomposite as an efficient affinity adsorbent for the depletion of abundant proteins from bovine blood[J]. Journal of Materials Chemistry B, 2013, 1(30): 3625-3632. doi: 10.1039/c3tb20573h
    [27] Weber T W. Pore and solid diffusion models for fixed-bed adsorbers[J]. AIChE Journal, 1974, 20(2): 228-238. doi: 10.1002/aic.690200204
    [28] Din A T M. Batch adsorption of phenol onto physiochemical-activated coconut shell[J]. Journal of Hazardous Materials, 2009, 161(2-3): 1522-1529. doi: 10.1016/j.jhazmat.2008.05.009
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  76
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-09-18
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回