扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维石墨烯金属网固相萃取测定有机磷农药残留

朱风 丁荣 徐浩 杨庆利 吴薇 侯秀丹

朱风, 丁荣, 徐浩, 杨庆利, 吴薇, 侯秀丹. 三维石墨烯金属网固相萃取测定有机磷农药残留[J]. 分析测试技术与仪器, 2021, 27(3): 149-157. doi: 10.16495/j.1006-3757.2021.03.001
引用本文: 朱风, 丁荣, 徐浩, 杨庆利, 吴薇, 侯秀丹. 三维石墨烯金属网固相萃取测定有机磷农药残留[J]. 分析测试技术与仪器, 2021, 27(3): 149-157. doi: 10.16495/j.1006-3757.2021.03.001
ZHU Feng, DING Rong, XU Hao, YANG Qing-li, WU Wei, HOU Xiu-dan. Three-Dimensional Graphene-Based Stainless-Steel Mesh as Solid-Phase Extraction Material for Determination of Organophosphorus Pesticides[J]. Analysis and Testing Technology and Instruments, 2021, 27(3): 149-157. doi: 10.16495/j.1006-3757.2021.03.001
Citation: ZHU Feng, DING Rong, XU Hao, YANG Qing-li, WU Wei, HOU Xiu-dan. Three-Dimensional Graphene-Based Stainless-Steel Mesh as Solid-Phase Extraction Material for Determination of Organophosphorus Pesticides[J]. Analysis and Testing Technology and Instruments, 2021, 27(3): 149-157. doi: 10.16495/j.1006-3757.2021.03.001

三维石墨烯金属网固相萃取测定有机磷农药残留

doi: 10.16495/j.1006-3757.2021.03.001
基金项目: 

国家自然科学基金 31901766

青岛农业大学高层次人才启动基金 1119014

国家大学生创新创业训练计划项目 S202010435011

详细信息
    作者简介:

    朱风(2000-), 女, 本科, 研究方向: 色谱及相关技术, E-mail: zhuupup@yeah.net

    通讯作者:

    侯秀丹(1991-),女,博士,副教授,研究方向:色谱及相关技术,E-mail: qdxdhou@qau.edu.cn

  • 中图分类号: O652.63

Three-Dimensional Graphene-Based Stainless-Steel Mesh as Solid-Phase Extraction Material for Determination of Organophosphorus Pesticides

Funds: 

National Natural Science Foundation of China 31901766

Talents of High-Level Scientific Research Foundation, Qingdao Agricultural University 1119014

National College Student Innovation and Entrepreneurship Training Program S202010435011

  • 摘要: 以金属网为基体材料, 通过化学键合的方式将氧化石墨烯和Au纳米颗粒层层组装到金属网表面, 得到一种Au纳米颗粒改性的石墨烯气凝胶修饰的金属网萃取材料, 并应用于有机磷农药的富集检测. 与商用的萃取材料进行对比, 相较于SAX、C18、-NH2、Carb、Florisil等材料, 金纳米颗粒改性的三维石墨烯气凝胶金属网对有机磷农药分子的萃取回收率明显提高. 在优化的条件下, 方法对有机磷农药检测的线性范围较宽(辛硫磷和杀螟硫磷: 1~200 μg/L, 双硫磷和倍硫磷: 0.5~200 μg/L), 线性拟合良好(r≥0.990 6), 检测限为0.1~0.2 μg/L. 萃取材料制备简单、成本低、重现性及灵敏度好, 将其应用于香菜中有机磷农药的检测, 未检出, 测定加标回收率为70.4%~97.7%, 相对标准偏差为3.9%~10.3%.
  • 图  1  Au/GOA-SSM的制备过程

    Figure  1.  Preparation process of Au/GOA-SSM

    图  2  (A, B) Au/GOA-SSM的扫描电镜图, (C) X射线光电子能谱图

    (a) 氧化石墨烯气凝胶修饰金属网,(b) Au改性的氧化石墨烯气凝胶修饰金属网

    Figure  2.  (A, B) Scanning electron microscopic images of Au/GOA-SSM with different magnifications, (C) X-ray photoelectron spectra of (a) GOA-SSM and (b) Au/GOA-SSM

    图  3  萃取和洗脱条件的优化

    (a) 进样体积, (b) 进样速率, (c) 洗脱剂的种类, (d) 洗脱剂的体积

    Figure  3.  Optimization of extraction and elution conditions

    (a) volume of sample, (b) rate of sample loading, (c) types of eluent, (d) volume of eluent

    图  4  (a) 不同材料的萃取回收率比较, (b) 影响萃取性能的因素对比

    Figure  4.  (a) Comparison of extraction recoveries of different materials and (b) affected factors for extraction efficiency

    图  5  实际样品以及加入20、40、100 μg/L标准溶液的色谱图

    Figure  5.  Chromatograms of real sample, and samples spiked with 20, 40, 100 μg/L of standard solutions

    表  1  4种有机磷农药在金纳米颗粒上的理论作用能及油水分配系数(log KOW)

    Table  1.   Interaction energies and octanol-water partition coefficients (log KOW) of four organophosphorus (OPPs) on Au nanoparticles

    分析物 结构式 log KOW ΔHF/(kJ/mol) ΔG/(kJ/mol)
    辛硫磷 4.38 -5.57 -2.98
    双硫磷 5.96 -5.83 -3.14
    倍硫磷 4.08 -4.08 -1.75
    杀螟硫磷 3.30 -5.72 -3.33
    下载: 导出CSV

    表  2  有机磷农药的线性范围、相关系数、检出限和相对标准偏差

    Table  2.   Linear ranges, correlation coefficients (r), limit of detections (LOD, S/N =3), and relative standard deviations (RSDs, n=5) of OPPs

    分析物 线性范围/(μg/L) r LOD/(μg/L) RSD重复性/ % RSD重现性/%
    辛硫磷 1~200 0.997 5 0.2 2.8 9.8
    双硫磷 0.5~200 0.998 9 0.1 4.3 8.7
    倍硫磷 0.5~200 0.997 3 0.1 4.9 5.9
    杀螟硫磷 1~200 0.990 6 0.2 5.6 7.4
    下载: 导出CSV

    表  3  香菜中有机磷农药的含量、加标回收率和相对标准偏差(n=3)

    Table  3.   Concentrations, spiked recoveries and RSDs of OPPs pesticides in coriander(n=3)

    分析物 加入质量浓度/(μg/L) 香菜
    检测质量浓度/(μg/L) 回收率/ % RSD/ %
    辛硫磷 0 - - -
    20 15.2 76.0 5.7
    40 29.5 73.8 6.3
    100 96.5 96.5 8.6
    双硫磷 0 - - -
    20 14.6 73.0 6.5
    40 33.0 82.5 5.7
    100 97.7 97.7 5.2
    倍硫磷 0 - - -
    20 14.5 72.9 9.4
    40 34.2 85.5 10.2
    100 93.7 93.7 8.3
    杀螟硫磷 0 - - -
    20 13.8 70.4 10.3
    40 34.6 86.7 3.9
    100 89.2 89.2 8.6
    下载: 导出CSV
  • [1] Teodoro M, Briguglio G, Fenga C, Costa C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances[J]. Toxicology Reports, 2019, 6: 564-570. doi: 10.1016/j.toxrep.2019.06.004
    [2] 张玉琪, 张瑾如, 王锋, 李家冬, 司睿, 吕丽珊, 沈玉栋, 王弘, Hammock Bruce D, 孙远明. 对硫磷纳米抗体筛选及分子识别机制研究[J]. 分析化学, 2019, 47(9): 1419-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909020.htm

    ZHANG Yu-qi, ZHANG Jin-ru, WANG Feng, LI Jia-dong, SI Rui, LV Li-shan, SHEN Yu-dong, WANG Hong, Hammock Bruce D, SUN Yuan-ming. Selection of nanobody and recognition mechanism between nanobody and parathion[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1419-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909020.htm
    [3] 冯春, 石志红, 吴兴强, 胡雪艳, 范春林. 加速溶剂萃取结合气相色谱-三重四极杆质谱测定枸杞中有机磷农药多残留[J]. 分析测试学报, 2019, 38(4): 417-422. doi: 10.3969/j.issn.1004-4957.2019.04.007

    FENG Chun, SHI Zhi-hong, WU Xing-qiang, HU Xue-yan, FAN Chun-lin. Determination of organophosphorus pesticide residues in Chinese wolfberry by gas chromatography-triple quadrupole mass spectrometry with accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2019, 38(4): 417-422. doi: 10.3969/j.issn.1004-4957.2019.04.007
    [4] Huang X C, Ma J K, Feng R X, Wei S L. Simultaneous determination of five organophosphorus pesticide residues in different food samples by solid-phase microextraction fibers coupled with high-performance liquid chromatography[J]. Journal of the Science of Food and Agriculture, 2019, 99(15): 6998-7007. doi: 10.1002/jsfa.9990
    [5] Lu D K, Liu C, Deng JJ, Zhou X G, Shi G Y, Zhou T S. Rational design of an ionic liquid dispersive liquid-liquid micro-extraction method for the detection of organophosphorus pesticides[J]. The Analyst, 2019, 144(6): 2166-2172. doi: 10.1039/C9AN00123A
    [6] Zahiri E, Khandaghi J, Farajzadeh M A, Afshar Mogaddam M R. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples[J]. Journal of Chromatography A, 2020, 1627: 461390. doi: 10.1016/j.chroma.2020.461390
    [7] Nasiri M, Ahmadzadeh H, Amiri A. Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: Application to apple juice and environmental water[J]. Talanta, 2021, 227: 122078. doi: 10.1016/j.talanta.2020.122078
    [8] 夏鑫鑫, 李想, 朱昱. 磁力搅拌超声乳化微萃取用于血清中有机磷农药的检测[J]. 中国法医学杂志, 2021, 36(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-FUAN202101018.htm

    XIA Xin-xin, LI Xiang, ZHU Yu. Determination of organophosphorus pesticides in serum by magnetic stirring combined with ultrasound assisted emulsification microextraction[J]. Chinese Journal of Forensic Medicine, 2021, 36(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-FUAN202101018.htm
    [9] Shakourian M, Yamini Y, Safari M. Facile magnetization of metal-organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples[J]. Talanta, 2020, 218: 121139. doi: 10.1016/j.talanta.2020.121139
    [10] Duo H X, Lu X F, Wang S, Liang X J, Guo Y. Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation[J]. TrAC Trends in Analytical Chemistry, 2020, 133: 116093. doi: 10.1016/j.trac.2020.116093
    [11] Li G L, Wen A, Liu J H, Wu D, Wu Y N. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites[J]. Food Chemistry, 2021, 337: 127974. doi: 10.1016/j.foodchem.2020.127974
    [12] Zhang L Y, Yu R Z, Zhang X, Zhang D J. Ionic liquid-based dispersive liquid-liquid micro-extraction of five organophosphorus pesticides in coarse cereals[J]. Food Analytical Methods, 2021, 14(1): 10-17. doi: 10.1007/s12161-020-01851-y
    [13] Feng J J, Loussala H M, Han S, Ji X P, Li C Y, Sun M. Recent advances of ionic liquids in sample preparation[J]. TrAC Trends in Analytical Chemistry, 2020, 125: 115833. doi: 10.1016/j.trac.2020.115833
    [14] Tian Y, Feng J J, Wang X Q, Luo C N, Sun M. Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction[J]. Journal of Chromatography A, 2019, 1583: 48-54. doi: 10.1016/j.chroma.2018.11.018
    [15] Arias P G, Martínez-Pérez-cejuela H, Combès A, Pichon V, Pereira E, Herrero-Martínez J M, Bravo M. Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection[J]. Journal of Chromatography A, 2020, 1626: 461346. doi: 10.1016/j.chroma.2020.461346
    [16] 孙怡琳, 亢洋, 郑龙芳, 张琬茹, 马爱新, 赵建, 王晓, 赵先恩. 衍生化-磁固相萃取高效液相色谱荧光检测内分泌干扰物[J]. 分析化学, 2019, 47(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201901014.htm

    SUN Yi-lin, KANG Yang, ZHENG Long-fang, ZHANG Wan-ru, MA Ai-xin, ZHAO Jian, WANG Xiao, ZHAO Xian-en. Determination of endocrine disruptors by high performance liquid chromatography-fluorescence detection using magnetic dispersive solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201901014.htm
    [17] Niu P H, Nie X B, Li Y J, Liang X J, Wang L C, Guo Y. Magnetic N-doped 3D graphene-like framework carbon for extraction of cephalexin monohydrate and ceftiofur hydrochloride[J]. Talanta, 2020, 215: 120932. doi: 10.1016/j.talanta.2020.120932
    [18] 陈柏森, 王希越, 祝波, 连丽丽, 娄大伟. 玉米须衍生磁性多孔碳的制备及其对海水中孔雀石绿的萃取[J]. 分析测试学报, 2020, 39(8): 993-999. doi: 10.3969/j.issn.1004-4957.2020.08.008

    CHEN Bai-sen, WANG Xi-yue, ZHU Bo, LIAN Li-li, LOU Da-wei. Preparation of magnetic porous biochar derived from corn silk and its extraction of malachite green in seawater[J]. Journal of Instrumental Analysis, 2020, 39(8): 993-999. doi: 10.3969/j.issn.1004-4957.2020.08.008
    [19] Amiri A, Ghaemi F. Graphene grown on stainless steel mesh as a highly efficient sorbent for sorptive microextraction of polycyclic aromatic hydrocarbons from water samples[J]. Analytica Chimica Acta, 2017, 994: 29-37. doi: 10.1016/j.aca.2017.08.049
    [20] Zhao J, Zhang Y Z, Chen J Y, Zhang W L, Yuan D, Chua R, Alshareef H N, Ma Y W. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage[J]. Advanced Energy Materials, 2020, 10(18): 2000099. doi: 10.1002/aenm.202000099
    [21] Hou X D, Xu H, Zhen T Y, Wu W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis[J]. Trends in Food Science & Technology, 2020, 105: 76-92. http://www.sciencedirect.com/science/article/pii/S0924224420305884
    [22] Cai K Q, Zheng M X, Xu H, Zhu Y J, Zhang L T, Zheng B D. Gellan gum/graphene oxide aerogels for methylene blue purification[J]. Carbohydrate Polymers, 2021, 257: 117624. doi: 10.1016/j.carbpol.2021.117624
    [23] Zhan W W, Zhu M, Lan J L, Wang H J, Yuan H C, Yang X P, Sui G. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage[J]. Chemical Engineering Journal, 2021, 408: 128007. doi: 10.1016/j.cej.2020.128007
    [24] Wu Q, Wu W, Zhan X, Hou X D. Three-dimensional chitosan/graphene oxide aerogel for high-efficiency solid-phase extraction of acidic herbicides in vegetables[J]. New Journal of Chemistry, 2020, 44(25): 10654-10661. doi: 10.1039/D0NJ01960G
    [25] Tang S, Sun J, Xia D S, Zang B, Gao Y H, Chen C X, Shen W, Lee H K. In-syringe extraction using compressible and self-recoverable, amphiphilic graphene aerogel as sorbent for determination of phenols[J]. Talanta, 2019, 195: 165-172. doi: 10.1016/j.talanta.2018.11.038
    [26] Li B S, Lai C, Zhang M M, Liu S Y, Yi H, Liu X G, An N, Zhou X R, Li L, Fu Y K, Qin L, Chen L. N, S-GQDs and Au nanoparticles co-modified ultrathin Bi2MoO6 nanosheet with enhanced charge transport dynamics for full-spectrum-light-driven molecular oxygen activation[J]. Chemical Engineering Journal, 2021, 409: 128281. doi: 10.1016/j.cej.2020.128281
    [27] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3): 771-778. doi: 10.1021/cm981085u
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  36
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-08-30
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回