扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究

杨喆 何利华 张丙青

杨喆, 何利华, 张丙青. 基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究[J]. 分析测试技术与仪器, 2021, 27(3): 158-164. doi: 10.16495/j.1006-3757.2021.03.002
引用本文: 杨喆, 何利华, 张丙青. 基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究[J]. 分析测试技术与仪器, 2021, 27(3): 158-164. doi: 10.16495/j.1006-3757.2021.03.002
YANG Zhe, HE Li-hua, ZHANG Bing-qing. Study on Photoelectrochemical Glucose Sensor Based on Bismuth Vanadate Semiconductor[J]. Analysis and Testing Technology and Instruments, 2021, 27(3): 158-164. doi: 10.16495/j.1006-3757.2021.03.002
Citation: YANG Zhe, HE Li-hua, ZHANG Bing-qing. Study on Photoelectrochemical Glucose Sensor Based on Bismuth Vanadate Semiconductor[J]. Analysis and Testing Technology and Instruments, 2021, 27(3): 158-164. doi: 10.16495/j.1006-3757.2021.03.002

基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究

doi: 10.16495/j.1006-3757.2021.03.002
基金项目: 

国家自然科学基金 21706056

详细信息
    作者简介:

    杨喆(1996-), 男, 在读硕士研究生, 专业为化学工艺, E-mail: 761644732@qq.com

    通讯作者:

    张丙青(1989-),女,副教授,从事光电化学分析工作,E-mail: zbq1989121@163.com

  • 中图分类号: O657.1

Study on Photoelectrochemical Glucose Sensor Based on Bismuth Vanadate Semiconductor

Funds: 

National Natural Science Foundation of China 21706056

  • 摘要: 葡萄糖浓度的检测在食品、医药、环境等领域的应用很广泛, 因此, 发展具有低成本、高灵敏度、高选择性的葡萄糖传感器具有重要意义. 光电化学传感器具有激发源与检测信号源相互独立的特点, 被认为是一种潜在的高灵敏的葡萄糖检测方法. 通过电化学沉积及高温热处理两步法在氟掺杂的SnO2透明导电玻璃(FTO)基底上制备了BiVO4薄膜. 通过X射线衍射分析(XRD)、拉曼光谱(Raman)、扫描电子显微镜分析(SEM)等表征技术对BiVO4电极的结构组成和微观形貌等性质进行了表征. 结果表明, 所制得的BiVO4为单斜晶系, 形貌为黏连的纳米颗粒. 进一步地, 对基于BiVO4半导体构建的光电化学葡萄糖传感器性能进行了评价. 电化学测试表明, 葡萄糖在BiVO4电极上的氧化电流与葡萄糖的浓度能够呈现出很好的线性关系, 在5~35 mmol/L浓度区间的检测灵敏度为17.38 μA/cm2/(mmol/L). 研究为葡萄糖提供了一种简易廉价的检测新策略.
  • 图  1  BiVO4电极的制备过程

    Figure  1.  Schematic representation of FTO/ BiVO4

    图  2  BiVO4薄膜的SEM图

    Figure  2.  SEM images of BiVO4

    (a) SEM images of BiVO4 at resolution of 1 μm, (b) SEM images of BiVO4 at resolution of 100 nm

    图  3  BiVO4薄膜的XRD图(a)和Raman光谱(b)

    Figure  3.  3 XRD patterns (a) and Raman spectra (b) of BiVO4 and FTO

    图  4  BiVO4电极的性能测试曲线

    (a)经不同沉积时间制备BiOI薄膜合成所得, (b)BiOI薄膜上滴加不同浓度V溶液制得

    Figure  4.  Photoelectrochemical performance of BiVO4 electrodes prepared with different deposition times(a) and different concentrations of vanadyl acetylacetonate (b)

    图  5  BiVO4电极在光照或暗态条件及空白电解质溶液中加入或不加入10 mmol/L葡萄糖的线性扫描曲线

    Figure  5.  Linear sweep voltammetric (LSV) curves of BiVO4 electrode tested in blank or 10 mmol/L glucose contained electrolyte under light or dark conditions

    图  6  (a) 在-0.1 V vs. SCE电位下对0~35 mmol/L葡萄糖的感应电流, (b)电流与葡萄糖浓度的线性关系

    Figure  6.  (a) Photocurrent responses of BiVO4 photoanode recorded at a bias potential of -0.1 V (vs. SCE) in sodium borate (pH 9) in presence of 0~35 mmol/L glucose, (b) linear relationship between photocurrent and glucose concentration

    图  7  (a) 在-0.2 V vs. SCE电位下对0~35 mmol/L葡萄糖的感应电流, (b)电流与葡萄糖浓度的线性关系

    Figure  7.  (a) Photocurrent responses of BiVO4 photoanode recorded at a bias potential of -0.2 V (vs. SCE) in sodium borate (pH 9) in presence of 0~35 mmol/L glucose, (b) linear relationship between photocurrent and glucose concentration

    图  8  基于BiVO4电极的光电葡萄糖传感器工作机理图

    Figure  8.  Mechanism diagram of photoelectrochemical glucose sensor based on BiVO4 electrode

    图  9  -0.1 V vs. SCE的电位下连续添加10 mmol/L葡萄糖或1.0 mmol/L干扰物质的光电流-时间曲线通常情况下,在血液中,干扰物质浓度比葡萄糖浓度低30~80倍,因此所加干扰物质浓度低于葡萄糖

    Figure  9.  Interference test carried out by successively adding 10 mmol/L glucose and 1.0 mmol/L potential interferents at an applied potential of -0.1 V (vs. SCE) due to these interferents concentrations are usually 30~ 80 times lower than that of glucose in human blood

    表  1  基于不同半导体光电葡萄糖传感器性能对比

    Table  1.   Comparison of different semiconductor photoelectric glucose sensor performances

    电极 灵敏度/[μA/cm2/(mmol/L)] 检测范围/(mmol/L) 引用文献
    TiO2 200 0.01~0.20 [7]
    Fe2O3 17.23 0.05~6.0 [14]
    ZnO 20.33 0~10.0 [15]
    WO3 68.15 0.1~0.5 [16]
    BiVO4 17.38 0~35 本工作
    下载: 导出CSV
  • [1] 王阳, 张松, 杨琳. 血糖检测方法的研究现状[J]. 北京生物医学工程, 2011, 30(5): 538-542. doi: 10.3969/j.issn.1002-3208.2011.05.21

    WANG Yang, ZHANG Song, YANG Lin. Review of blood glucose detective methods[J]. Beijing Biomedical Engineering, 2011, 30(5): 538-542. doi: 10.3969/j.issn.1002-3208.2011.05.21
    [2] 黄志恒. 电沉积制备功能复合电化学生物传感器及其应用研究[D]. 杭州: 杭州电子科技大学, 2019.

    HUANG Zhi-heng. Preparation of functional composite electrochemical biosensor by electrodeposition method and its application[D]. Hangzhou: Hangzhou Dianzi University, 2019.
    [3] Vennila P, Yoo D J, Kim A R, Kumar G G. Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications[J]. Journal of Alloys and Compounds, 2017, 703: 633-642. doi: 10.1016/j.jallcom.2017.01.044
    [4] Sheng L Y, Li Z J, Meng A, Xu Q H. Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@PEDOT-rGO nanocomposite[J]. Sensors and Actuators B: Chemical, 2018, 254: 1206-1215. doi: 10.1016/j.snb.2017.08.008
    [5] Raza M H, Movlaee K, Wu Y L, El-Refaei S M, Karg M, Leonardi S G, Neri G, Pinna N. Tuning the NiO thin film morphology on carbon nanotubes by atomic layer deposition for enzyme-free glucose sensing[J]. ChemElectroChem, 2019, 6(2): 383-392. doi: 10.1002/celc.201801420
    [6] Hwang D W, Lee S, Seo M, Chung T D. Recent advances in electrochemical non-enzymatic glucose sensors - A review[J]. Analytica Chimica Acta, 2018, 1033: 1-34. doi: 10.1016/j.aca.2018.05.051
    [7] He L H, Liu Q B, Zhang S J, Zhang X T, Gong C L, Shu H H, Wang G J, Liu H, Wen S, Zhang B Q. High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application[J]. Electrochemistry Communications, 2018, 94: 18-22. doi: 10.1016/j.elecom.2018.07.021
    [8] Ashok A, Kumar A, Tarlochan F. Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles[J]. Applied Surface Science, 2019, 481: 712-722. doi: 10.1016/j.apsusc.2019.03.157
    [9] Yang W K, Xu W, Zhang N, Lai X Y, Peng J, Cao Y, Tu J C. TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose[J]. Journal of Materials Science, 2020, 55(14): 6105-6117. doi: 10.1007/s10853-020-04422-y
    [10] Zhang B Q, Fan W J, Yao TT, Liao S C, Li A L, Li D, Liu M Y, Shi J Y, Liao S J, Li C. Design and fabrication of a dual-photoelectrode fuel cell towards cost-effective electricity production from biomass[J]. ChemSusChem, 2017, 10(1): 99-105. doi: 10.1002/cssc.201601422
    [11] Zhang B Q, Shi J Y, Ding C M, Chong R F, Zhang B, Wang Z L, Li A L, Liang Z X, Liao S J, Li C. Conversion of biomass derivatives to electricity in photo fuel cells using undoped and tungsten-doped bismuth vanadate photoanodes[J]. ChemSusChem, 2015, 8(23): 4049-4055. doi: 10.1002/cssc.201500942
    [12] Wang S, Li S, Wang W, Zhao M T, Liu J F, Feng H F, Chen Y M, Gu Q, Du Y, Hao W C. A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light[J]. Sensors and Actuators B: Chemical, 2019, 291(JUL. ): 34-41. http://www.onacademic.com/detail/journal_1000042281230599_609f.html
    [13] McDonald K J, Choi K S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation[J]. Energy & Environmental Science, 2012, 5(9): 8553. http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22608a
    [14] Liu F Y, Wang P, Zhang Q Q, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Dai Y, Huang B B. Α-Fe2O3 film with highly photoactivity for non-enzymatic photoelectrochemical detection of glucose[J]. Electroanalysis, 2019, 31(9): 1809-1814. doi: 10.1002/elan.201900133
    [15] Lee C T, Chiu Y S, Ho S C, Lee Y J. Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor[J]. Sensors (Basel), 2011, 11(5): 4648-4655. doi: 10.3390/s110504648
    [16] Chen D Y, Jiang D, Du X J, Zhou L, Huang L Y, Qian J, Liu Q, Hao N, Li Y P, Wang K. Engineering efficient charge transfer based on ultrathin graphite-like carbon nitride/WO3 semiconductor nanoheterostructures for fabrication of high-performances non-enzymatic photoelectrochemical glucose sensor[J]. Electrochimica Acta, 2016, 215: 305-312. doi: 10.1016/j.electacta.2016.08.113
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  16
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-09-03
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回