扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钐钴合金等温时效过程中胞状组织结构的透射电镜表征

吴海辰 刘壮 王新明 陈国新 卢焕明

吴海辰, 刘壮, 王新明, 陈国新, 卢焕明. 钐钴合金等温时效过程中胞状组织结构的透射电镜表征[J]. 分析测试技术与仪器, 2022, 28(2): 118-124. doi: 10.16495/j.1006-3757.2022.02.002
引用本文: 吴海辰, 刘壮, 王新明, 陈国新, 卢焕明. 钐钴合金等温时效过程中胞状组织结构的透射电镜表征[J]. 分析测试技术与仪器, 2022, 28(2): 118-124. doi: 10.16495/j.1006-3757.2022.02.002
WU Hai-chen, LIU Zhuang, WANG Xin-ming, CHEN Guo-xin, LU Huan-ming. Characterization on Cellular Structure of SmCo Magnets During Isothermal Aging Using Transmission Electron Microscopy[J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 118-124. doi: 10.16495/j.1006-3757.2022.02.002
Citation: WU Hai-chen, LIU Zhuang, WANG Xin-ming, CHEN Guo-xin, LU Huan-ming. Characterization on Cellular Structure of SmCo Magnets During Isothermal Aging Using Transmission Electron Microscopy[J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 118-124. doi: 10.16495/j.1006-3757.2022.02.002

钐钴合金等温时效过程中胞状组织结构的透射电镜表征

doi: 10.16495/j.1006-3757.2022.02.002
基金项目: 

浙江省基础公益研究计划项目 LGC20E010002

中国科学院青年创新促进项目 2019295

详细信息
    作者简介:

    吴海辰(1988-),男,助理研究员,从事透射电子显微镜测试和管理工作,E-mail: wuhaichen@nimte.ac.cn

    通讯作者:

    陈国新(1984-),男,高级工程师,长期从事材料显微结构分析工作,E-mail: gxchen@nimte.ac.cn

  • 中图分类号: TN16;O641

Characterization on Cellular Structure of SmCo Magnets During Isothermal Aging Using Transmission Electron Microscopy

Funds: 

Zhejiang Province Public Welfare Technology Application Research Project LGC20E010002

Youth Innovation Promotion Association CAS 2019295

  • 摘要: SmCo高温永磁体的磁性能与其特有的胞状组织结构密切相关, 等温时效过程是胞状组织结构形成的主要阶段. 采用透射电子显微镜(TEM)对2:17型SmCo合金等温时效过程中的物相结构进行了表征, 阐述了胞状组织结构的TEM测试方法. 结果表明, 通过特定晶带轴的选取, 借助选区电子衍射和暗场像, 可以对固溶体中的纳米尺度短程有序化微区和时效初期的胞状组织结构胚芽进行精确表征. 结合高分辨分析, 可以进一步对2:17R相的有序化转变和胞状组织结构的生长进行分析, 并证明时效保温阶段结束时已形成1:5H、2:17R、1:3R三相共存的胞状组织结构.
  • 图  1  (a) [0001]轴固溶体和时效态的衍射斑点,(b) [10 10]轴固溶体衍射斑点,(c) [10 10]轴时效态衍射斑点

    Figure  1.  (a) SAED pattern of solution precursor and aged magnet along [0001] zone axis, (b) SAED pattern of solution precursor along [10 10] zone axis, (c) SAED pattern of aged magnet along [10 10] zone axis

    图  2  (a) 固溶体[21 10]轴衍射斑点,(b) 1:7H相衍射斑点示意图,(c) 2:17H相衍射斑点示意图,(d) 2:17R相衍射斑点示意图

    Figure  2.  (a) SAED pattern of solution precursor along [21 10] zone axis, (b)~(d) illustration of SAED patterns of 1:7H, 2:17H and 2:17R phases

    图  3  时效各阶段样品[21 10]轴衍射斑点(a) 1 min, (b) 5 min, (c) 1 h, (d) 12 h,(a)~(c)中右上角插图为2:17R孪晶变体超晶格斑点经过衬度反转后的放大图

    Figure  3.  SAED patterns of sample at different stage of aging along [21 10] zone axis (a) 1 min, (b) 5 min, (c) 1 h, (d) 12 h Inserted in (a)~(c) are the enlarged superlattice spots of 2:17R twin variants with inversed contrast

    图  4  时效各阶段样品暗场像

    (a)固溶体,(b) 5 min, (c) 1 h, (d) 12 h

    Figure  4.  TEM dark field images of sample at different stages of aging

    (a) solution precursor, (b) 5 min, (c) 1 h, (d) 12 h

    图  5  时效各阶段样品高分辨图

    (a) 固溶体,(b) 5 min,(c) 1 h, (d) 12 h

    Figure  5.  HRTEM images of sample at different stage of aging

    (a) solution precursor, (b) 5 min, (c) 1 h, (d) 12 h

  • [1] 潘树明. 强磁体: 稀土永磁材料原理、制造与应用[M]. 北京: 化学工业出版社, 2011: 217-259.
    [2] Sepehri-Amin H, Thielsch J, Fischbacher J, Ohkubo T, Schrefl T, Gutfleisch O, Hono K. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets[J]. Acta Materialia, 2017, 126: 1-10. doi: 10.1016/j.actamat.2016.12.050
    [3] Yu N J, Zhu M G, Song L W, Fang Y K, Song K K, Wang Q, Li W. Coercivity temperature dependence of Sm2Co17-type sintered magnets with different cell and cell boundary microchemistry[J]. Journal of Magnetism and Magnetic Materials, 2018, 452: 272-277. doi: 10.1016/j.jmmm.2017.12.058
    [4] 叶云, 李巧玲. 纳米晶双相稀土永磁合金透射电镜薄膜样品的制备[J]. 分析测试技术与仪器, 1999, 5(3): 181-183. http://www.fxcsjsyyq.net/fxcsjsyyq/article/id/19990314

    YE Yun, LI Qiao-ling. Preparation of nami crystal double phase rare earth permanent magnetism alloy film sample for transmission electron microscope[J]. Analysis and Testing Technology and Instruments, 1999, 5(3): 181-183. http://www.fxcsjsyyq.net/fxcsjsyyq/article/id/19990314
    [5] 张晓凯, 郑建华, 梁静霞, 霍宏斐. 不同形貌ZnO纳米结构的电子显微分析[J]. 分析测试技术与仪器, 2012, 18(2): 92-96. doi: 10.3969/j.issn.1006-3757.2012.02.006

    ZHANG Xiao-kai, ZHENG Jian-hua, LIANG Jing-xia, HUO Hong-fei. Electron microscopic analysis of different shaped ZnO nanostructure[J]. Analysis and Testing Technology and Instruments, 2012, 18(2): 92-96. doi: 10.3969/j.issn.1006-3757.2012.02.006
    [6] Gopalan R, Hono K, Yan A, Gutfleisch O. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.4)7.4 ribbons[J]. Scripta Materialia, 2009, 60(9): 764-767. doi: 10.1016/j.scriptamat.2009.01.006
    [7] Tang W, Zhang Y, Hadjipanayis G C. Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets[J]. Journal of Applied Physics, 1999, 87(1): 399-403.
    [8] Yan A, Bollero A, Müller K H, Gutfleisch O. Fast development of high coercivity in melt-spun Sm(Co, Fe, Cu, Zr)z magnets[J]. Applied Physics Letters, 2002, 80(7): 1243-1245. doi: 10.1063/1.1450253
    [9] Yan A, Gutfleisch O, Handstein A, Gemming T, Müller K H. Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co, Fe, Cu, Zr)z magnets[J]. Journal of Applied Physics, 2003, 93(10): 7975-7977. doi: 10.1063/1.1537700
    [10] Zhang C Y, Liu Z, Li M, Liu L, Li T Y, Chen R J, Lee D, Yan A R. The evolution of phase constitution and microstructure in iron-rich 2: 17-type Sm-Co magnets with high magnetic performance[J]. Scientific Reports, 2018, 8: 9103. doi: 10.1038/s41598-018-27487-x
    [11] Xu C, Wang H, Liu B J, Xu H, Zhang T L, Liu J H, Jiang C B. The formation mechanism of 1: 5H phase in Sm(Co, Fe, Cu, Zr)z melt-spun ribbons with high iron content[J]. Journal of Magnetism and Magnetic Materials, 2020, 496: 165939. doi: 10.1016/j.jmmm.2019.165939
    [12] Rabenberg L, Mishra R K, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets[J]. Journal of Applied Physics, 1982, 53(3): 2389-2391. doi: 10.1063/1.330867
    [13] Ray A E. A revised model for the metallurgical behavior of 2: 17-type permanent magnet alloys[J]. Journal of Applied Physics, 1990, 67(9): 4972-4974. doi: 10.1063/1.344720
    [14] Fidler J, Skalicky P, Rothwarf F. High resolution electron microscope study of Sm(Co, Fe, Cu, Zr)7.5magnets[J]. IEEE Transactions on Magnetics, 1983, 19(5): 2041-2043. doi: 10.1109/TMAG.1983.1062752
    [15] Wu H C, Liu Z, Zhang C Y, Yang Q Q, Lu H M, Chen G X, Wang X M, Li Y, Chen R J, Yan A R. Twinning, phase boundary structure and development of high coercivity in Fe-rich Sm2 Co17-type magnets[J]. Journal of Rare Earths, 2022, 40(1): 102-111. doi: 10.1016/j.jre.2021.01.004
    [16] Xue Z Q, Liu L, Liu Z, Li M, Lee D, Chen R J, Guo Y Q, Yan A R. Mechanism of phase transformation in 2: 17 type SmCo magnets investigated by phase stabilization[J]. Scripta Materialia, 2016, 113: 226-230. doi: 10.1016/j.scriptamat.2015.10.041
  • 加载中
图(5)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  19
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-06-01
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回