Volume 28 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
CHEN Chao, FAN Hai-li, CAI Zhi-wei, ZHANG Chuan-jie. Progress in Characterization of Controlled Release Microspheres Using Scanning Electron Microscope[J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 132-138. doi: 10.16495/j.1006-3757.2022.02.004
Citation: CHEN Chao, FAN Hai-li, CAI Zhi-wei, ZHANG Chuan-jie. Progress in Characterization of Controlled Release Microspheres Using Scanning Electron Microscope[J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 132-138. doi: 10.16495/j.1006-3757.2022.02.004

Progress in Characterization of Controlled Release Microspheres Using Scanning Electron Microscope

doi: 10.16495/j.1006-3757.2022.02.004

2021 National Drug Standard Formulation and Revision Research Project 2021Y05

  • Received Date: 2022-05-23
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-07-07
  • Publish Date: 2022-06-30
  • The important applications of scanning electron microscopy (SEM) in the characterization of controlled release microspheres are reviewed. The SEM method was used to characterize the microspheres, and the SEM-based automatic particle shape and size analysis software was used to perform statistical analysis of the microspheres, and the key application scenarios of SEM in the scientific research or development of microspheres were summarized. Microspheres are a type of formulation that is highly dependent on structure, and its performance and therapeutic effects are largely determined by their microscopic features such as structure and porosity. The size, particle size distribution and shape of microspheres play a decisive role in the drug release. Due to the characteristics of high drug loading, the interbatch consistency of microspheres is particularly important. Image analysis tools are of great significance for the characterization of interbatch consistency. SEM has the advantage of what you see is what you get, and can quickly evaluate the particle size, shape and surface roughness of microspheres intuitively. The results showed that the SEM has a wide application value in the production control and development of microspheres, and provides an advanced characterization tool for research and development of this type of preparation.
  • loading
  • [1]
    Spizzirri U G. Functional polymers for controlled drug release[J]. Pharmaceutics, 2020, 12(2): 135. doi: 10.3390/pharmaceutics12020135
    Mishra M. Handbook of encapsulation and controlled release[M]. Boca Raton: CRC Press, 2015.
    Feng S S, Chien C E. Chemotherapeutic engineering[M]. 2014.
    桑国卫, 樊代明, 杨胜利, 张伯礼. 创新药物研发方法及策略[M]. 北京: 高等教育出版社, 2015.
    Alavi M, Webster T J. Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: is there a real difference?[J]. Bioorganic & Medicinal Chemistry, 2021, 33: 116028.
    Duraikkannu S L, Castro-Muñoz R, Figoli A. A review on phase-inversion technique-based polymer microsphere fabrication[J]. Colloid and Interface Science Communications, 2021, 40: 100329. doi: 10.1016/j.colcom.2020.100329
    Kim K K, Pack D W. Microspheres for drug delivery[M]//Ferrari M, Lee A P, Lee L J. BioMEMS and biomedical nanotechnology: Volume I Biological and biomedical nanotechnology. Boston, MA: Springer US, 2006: 19-50.
    Wang Y, Burgess D J. Microsphere technologies[M]//Longacting injections and implants. Boston, MA: Springer US, 2011: 167-194.
    Rane A, Thomas S, Kalarikkal N. Microscopy applied to materials sciences and life sciences[M]. Boca Raton: CRC Press, 2018.
    Bunjes H, Kuntsche J. Light and electron microscopy[M]. 2016: 491-522.
    Newman A, Wenslow R. Solid-state characterization techniques[M]. 2018.
    Shur J, Price R. Advanced microscopy techniques to assess solid-state properties of inhalation medicines[J]. Advanced Drug Delivery Reviews, 2012, 64(4): 369-382. doi: 10.1016/j.addr.2011.11.005
    Arsiccio A, Barresi A A, Pisano R. Prediction of ice crystal size distribution after freezing of pharmaceutical solutions[J]. Crystal Growth & Design, 2017, 17(9): 4573-4581.
    Oddone I, Barresi A A, Pisano R. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step[J]. International Journal of Pharmaceutics, 2017, 524(1-2): 134-140. doi: 10.1016/j.ijpharm.2017.03.077
    Khadhraoui B, Turk M, Fabiano-Tixier A S, Petitcolas E, Robinet P, Imbert R, Maâtaoui M E, Chemat F. Histo-cytochemistry and scanning electron microscopy for studying spatial and temporal extraction of metabolites induced by ultrasound. Towards chain detexturation mechanism[J]. Ultrasonics Sonochemistry, 2018, 42: 482-492. doi: 10.1016/j.ultsonch.2017.11.029
    Balasubramani K, Sivarajasekar N, Naushad M. Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling[J]. Journal of Molecular Liquids, 2020, 301: 12426.
    Khan B M, Qiu H M, Xu S Y, Liu Y, Cheong K L. Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from porphyra haitanensis[J]. International Journal of Biological Macromolecules, 2020, 145: 1155-1161. doi: 10.1016/j.ijbiomac.2019.10.040
    Khan M S I, Oh S W, Kim Y J. Power of scanning electron microscopy and energy dispersive X-ray analysis in rapid microbial detection and identification at the single cell level[J]. Scientific Reports, 2020, 10: 2368. doi: 10.1038/s41598-020-59448-8
    Adewoye S O, Adenigba V O, Adewoye A O, Adagunodo T A. Bioremediation of heavy metals from pharmaceutical industry sewages using bimetallic nanoparticles of eichorniacrassipes[J]. IOP Conference Series: Earth and Environmental Science, 2021, 655(1): 012021. doi: 10.1088/1755-1315/655/1/012021
    Tacke S, Lucas F, Woodward J D, Gross H, Wepf R. High-resolution cryo-scanning electron microscopy of macromolecular complexes[M]//Biological field emission scanning electron microscopy. Chichester, UK: John Wiley & Sons, Ltd, 2019: 265-297.
    Muralidharan P, Acosta M F, Hayes D, Black S M, Mansour H M. Solid-state physicochemical characterization and microscopy of particles in dry powder inhalers[J]. Inhalation, 2016, 10(2): 20-26.
    Vetráková L', Neděla V, Runštuk J, Heger D. The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods[J]. The Cryosphere, 2019, 13(9): 2385-2405. doi: 10.5194/tc-13-2385-2019
    Zhao A Q, Yu L, Yang M, Wang C J, Wang M M, Bai X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch[J]. Food Hydrocolloids, 2018, 83: 465-472. doi: 10.1016/j.foodhyd.2018.04.041
    Mady O. Span 60 as a microsphere matrix: preparation and in vitro characterization of novel ibuprofen-span 60 microspheres[J]. Journal of Surfactants and Detergents, 2017, 20(1): 219-232. doi: 10.1007/s11743-016-1907-7
    李想, 孙考祥, 李又欣. 长效微球制剂产业化研究进展[J]. 中国药学杂志, 2019, 54(21): 1729-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201921002.htm

    LI Xiang, SUN Kao-xiang, LI You-xin. Progress in the industrialization of sustained-release microsphere[J]. Chinese Pharmaceutical Journal, 2019, 54(21): 1729-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201921002.htm
    Liu Z, Ye W L, Zheng J C, Wang Q D, Ma G W, Liu H Y, Wang X M. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release[J]. Regenerative Biomaterials, 2020, 7(4): 381-390. doi: 10.1093/rb/rbaa009
    Yao S L, Liu H Y, Yu S K, Li YY, Wang X M, Wang L N. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior[J]. Regenerative Biomaterials, 2016, 3(5): 309-317. doi: 10.1093/rb/rbw033
    Zhai J Q, Wang Y, Zhou X P, Ma Y, Guan S X. Long-term sustained release poly(lactic-co-glycolic acid) microspheres ofasenapine maleate with improved bioavailability for chronic neuropsychiatric diseases[J]. Drug Delivery, 2020, 27(1): 1283-1291. doi: 10.1080/10717544.2020.1815896
    Berkland C, Kim K, Pack D W. PLG microsphere size controls drug release rate through several competing factors[J]. Pharmaceutical Research, 2003, 20(7): 1055-1062. doi: 10.1023/A:1024466407849
    Uyen N T T, Hamid Z A A, Tram N X T, Ahmad N. Fabrication of alginate microspheres for drug delivery: a review[J]. International Journal of Biological Macromolecules, 2020, 153: 1035-1046. doi: 10.1016/j.ijbiomac.2019.10.233
    Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles[J]. International Journal of Pharmaceutics, 2006, 314(2): 198-206. doi: 10.1016/j.ijpharm.2005.07.031
    Wang T, Rodriguez-Uribe A, Misra M, Mohanty A K. Sustainable carbonaceous biofiller from miscanthus: size reduction, characterization, and potential bio-composites applications[J]. BioResources, 2018, 13(2): 3720-3739.
    Gonzalez deGortari M, Rodriguez-Uribe A, Misra M, Mohanty A K. Insights on the structure-performance relationship of polyphthalamide (PPA) composites reinforced with high-temperature produced biocarbon[J]. RSC Advances, 2020, 10(45): 26917-26927. doi: 10.1039/D0RA03629C
    Xu J H, Bai Y J, Li X H, Wei Z P, Sun L, Yu H D, Xu H. Porous core/dense shell PLA microspheres embedded with high drug loading of bupivacaine crystals for injectable prolonged release[J]. AAPS PharmSciTech, 2021, 22(1): 27. doi: 10.1208/s12249-020-01878-8
    Obeidat W M, Price J C. Evaluation of enteric matrix microspheres prepared by emulsion-solvent evaporation using scanning electron microscopy[J]. Journal of Microencapsulation, 2004, 21(1): 47-57. doi: 10.1080/02652040310001619983
    Zhang C Y, Wang A P, Wang H Y, Yan M C, Liang R C, He X T, Fu F H, Mu H J, Sun K X. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: preparation and in vitro and in vivo evaluation[J]. International Journal of Pharmaceutics, 2019, 560: 27-34. doi: 10.1016/j.ijpharm.2019.01.052
    Peng T T, Zhang X J, Huang Y, Zhao Z Y, Liao Q Y, Xu J, Huang Z W, Zhang J W, Wu C Y, Pan X, Wu C B. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation[J]. Scientific Reports, 2017, 7: 46517. doi: 10.1038/srep46517
    Fan J B, Huang C, Jiang L, Wang S T. Nanoporous microspheres: from controllable synthesis to healthcare applications[J]. Journal of Materials Chemistry B, 2013, 1(17): 2222-2235. doi: 10.1039/c3tb00021d
    Kim H K, Chung H J, Park T G. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone[J]. Journal of Controlled Release, 2006, 112(2): 167-174. doi: 10.1016/j.jconrel.2006.02.004
    Jiang P F, Jacobs K M, Ohr M P, Swindle-Reilly K E. Chitosan-polycaprolactone core-shell microparticles for sustained delivery of bevacizumab[J]. Molecular Pharmaceutics, 2020, 17(7): 2570-2584. doi: 10.1021/acs.molpharmaceut.0c00260
    van derKooij R S, Steendam R, Frijlink H W, Hinrichs W L J. An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 170: 24-42. doi: 10.1016/j.ejpb.2021.11.007
    Ranganath S H, Kee I, Krantz W B, Chow P K H, Wang C H. Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy[J]. Pharmaceutical Research, 2009, 26(9): 2101-2114. doi: 10.1007/s11095-009-9922-2
    Du Y H, Mo L J, Wang X D, Wang H X, Ge X H, Qiu T. Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties[J]. Microfluidics and Nanofluidics, 2020, 24(6): 1-11.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (52) PDF downloads(19) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint