扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟空间原子氧辐照下X射线光电子能谱仪的原位表征功能开发

刘建 剡珍 郝俊英 刘维民

刘建, 剡珍, 郝俊英, 刘维民. 模拟空间原子氧辐照下X射线光电子能谱仪的原位表征功能开发[J]. 分析测试技术与仪器, 2023, 29(1): 37-42. doi: 10.16495/j.1006-3757.2023.01.006
引用本文: 刘建, 剡珍, 郝俊英, 刘维民. 模拟空间原子氧辐照下X射线光电子能谱仪的原位表征功能开发[J]. 分析测试技术与仪器, 2023, 29(1): 37-42. doi: 10.16495/j.1006-3757.2023.01.006
LIU Jian, YAN Zhen, HAO Junying, LIU Weimin. Functional Development of In-Situ Characterization of X-Ray Photoelectron Spectrometer Under Simulated Space Atomic Oxygen Irradiation[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 37-42. doi: 10.16495/j.1006-3757.2023.01.006
Citation: LIU Jian, YAN Zhen, HAO Junying, LIU Weimin. Functional Development of In-Situ Characterization of X-Ray Photoelectron Spectrometer Under Simulated Space Atomic Oxygen Irradiation[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 37-42. doi: 10.16495/j.1006-3757.2023.01.006

模拟空间原子氧辐照下X射线光电子能谱仪的原位表征功能开发

doi: 10.16495/j.1006-3757.2023.01.006
基金项目: 中国科学院仪器设备功能开发技术创新项目(2023g107)
详细信息
    作者简介:

    刘建(1990−),男,工程师,主要从事空间润滑材料与技术研究工作,E-mail:jliu@licp.cas.cn

    通讯作者:

    刘维民,Tel:0931−4968166,E-mail:wmliu@licp.cas.cn

  • 中图分类号: O657; O641; TH842

Functional Development of In-Situ Characterization of X-Ray Photoelectron Spectrometer Under Simulated Space Atomic Oxygen Irradiation

Funds: Instrument and Equipment Functional Development Technology Innovation Project of Chinese Academy of Sciences (2023g107)
  • 摘要: 对现有的X射线光电子能谱仪进行功能开发,在不改变仪器工作原理、不影响现有功能的前提下,将研制的空间交变温度原子氧辐照装置集成到其快速进样室,重点解决集群结构的匹配和性能兼容问题,实现模拟空间交变温度原子氧辐照环境下材料的原位表征功能. 采用Kapton膜的质量损失方法测试空间交变温度原子氧辐照装置的原子氧通量密度,氧气流量、偏压和微波电流均对原子氧通量密度有较大影响. 系统测试表明,原子氧辐照使WS2薄膜表面发生了严重氧化,影响了薄膜的化学组成. 不同温度原子氧辐照导致了不可忽略的化学组成与结构的差异.
  • 图  1  原子氧源的结构与原理图

    Figure  1.  Structure and schematic of AO source

    图  2  空间交变温度原子氧辐照装置设计图与结构图

    Figure  2.  Schematic and image of space alternating temperature AO irradiation device

    图  3  模拟空间交变温度的工作原理

    Figure  3.  Work principle of simulating space alternating temperature

    图  4  (a)样品托、(b)样品台及(c)机械手抓取样品托照片

    Figure  4.  Images of (a) sample holder, (b) sample stage and (c) manipulator garbing sample holder

    图  5  XPS快速进样室及功能开发后的总体结构图

    Figure  5.  Images of XPS fast sampling chamber and overall structure after functional development

    图  6  Kapton膜原子氧辐照前后的照片

    Figure  6.  Image of Kapton before and after AO irradiation

    图  7  WS2薄膜及不同温度下原子氧辐照后薄膜的全谱、价带谱及W、S、C、O高分辨谱

    Figure  7.  Survey, valence band and high resolution XPS spectra of W, S, C, O of WS2 film and AO irradiated film at different temperatures

    表  1  不同条件下的原子氧通量密度

    Table  1.   Flux of AO under different conditions

    影响因素氧气流量/(mL/min)偏压/V微波电流/mA温度/℃
    1357901020304080100120−10020+150
    原子氧通量密度/
    (×1015 atoms/cm2·s)
    2.93.94.82.62.43.84.85.14.94.82.93.54.84.74.84.7
    规律先增大后减小,5 mL/min时存在极值先增大后略减小,20 V时最大微波电流越大,通量密度越大改变温度,Kapton膜剥蚀率几乎不变
    下载: 导出CSV

    表  2  XPS计算的WS2薄膜元素的相对含量

    Table  2.   Element contents from XPS analysis of surface of as-deposited and AO irradiated WS2 films /%

    元素原子百分含量
    WS2 film−100 ℃20 ℃150 ℃
    W 11.4812.7613.2612.32
    S 20.957.115.936.21
    C 55.0638.0636.6239.32
    O 12.5142.0744.1942.15
    S/W1.820.560.450.50
    下载: 导出CSV
  • [1] 王齐华, 吕美, 王廷梅. 聚合物材料的空间摩擦学[M]. 北京: 科学出版社, 2019.
    [2] 赵雪, 蔡震波. 空间环境与卫星在轨异常分析. 中国空间科学学会空间探测专业委员会第十七次学术会议论文集, 2004: 43-49.
    [3] Yu Q L, Wang X W, Zhang C Y, et al. Resistance to space atomic oxygen radiation of MAC-based supramolecular gel lubricant containing POSS[J]. Tribology International,2023,177 :107838. doi: 10.1016/j.triboint.2022.107838
    [4] Fan X, Shi Y B, Cui M J, et al. MoS2/WS2 nanosheet-based composite films irradiated by atomic oxygen: implications for lubrication in space[J]. ACS Applied Nano Materials,2021,4 :10307-10320. doi: 10.1021/acsanm.1c01816
    [5] Xu S S, Sun J Y, Weng L J, et al. In-situ friction and wear responses of WS2 films to space environment: vacuum and atomic oxygen[J]. Applied Surface Science,2018,447 :368-373. doi: 10.1016/j.apsusc.2018.04.012
    [6] 高晓明, 胡明, 孙嘉奕, 等. 润滑材料的空间环境效应[J]. 中国材料进展,2017,36(7-8):481-491, 511 doi: 10.7502/j.issn.1674-3962.2017.07.01

    GAO Xiaoming, HU Ming, SUN Jiayi, et al. Space environment effects on lubricants[J]. Materials China,2017,36 (7-8):481-491, 511. doi: 10.7502/j.issn.1674-3962.2017.07.01
    [7] 刘维民, 翁立军, 孙嘉奕. 空间润滑材料与技术手册[M]. 北京: 科学出版社, 2009.
    [8] Greczynski G, Hultman L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing[J]. Progress in Materials Science,2020,107 :100591. doi: 10.1016/j.pmatsci.2019.100591
    [9] Fadley C S. X-ray photoelectron spectroscopy: Progress and perspectives[J]. Journal of Electron Spectroscopy and Related Phenomena,2010,178-179 :2-32. doi: 10.1016/j.elspec.2010.01.006
    [10] 苗利静, 江柯敏, 卢焕明. X射线光电子能谱仪的开放使用与管理[J]. 分析测试技术与仪器,2017,23(2):124-126

    MIAO Lijing, JIANG Kemin, LU Huanming. Opening use and management of X-ray photoelectron spectroscope[J]. Analysis and Testing Technology and Instruments,2017,23 (2):124-126.
    [11] 章小余, 赵志娟, 刘芬. 样品高度对XPS测试的影响[J]. 分析测试技术与仪器,2013,19(4):244-246

    ZHANG Xiaoyu, ZHAO Zhijuan, LIU Fen. Effects of sample height on XPS[J]. Analysis and Testing Technology and Instruments,2013,19 (4):244-246.
    [12] 赵小虎, 沈志刚, 邢玉山, 等. 地面模拟设备中原子氧通量测量方法的比较研究[J]. 航空学报,2008,29(2):478-486 doi: 10.3321/j.issn:1000-6893.2008.02.036

    ZHAO Xiaohu, SHEN Zhigang, XING Yushan, MA Shu-lin, et al. Comparative study of measurement methods of atomic oxygen flux in ground-based simulation facility[J]. Acta Aeronautica et Astronautica Sinica,2008,29 (2):478-486. doi: 10.3321/j.issn:1000-6893.2008.02.036
    [13] 刘向鹏, 童靖宇, 李金洪. 航天器薄膜材料在原子氧环境中退化研究[J]. 航天器环境工程,2006,23(1):39-41, 59 doi: 10.3969/j.issn.1673-1379.2006.01.007

    LIU Xiangpeng, TONG Jingyu, LI Jinhong. Study on the degradation of spacecraft film material due to AO interaction[J]. Spacecraft Environment Engineering,2006,23 (1):39-41, 59. doi: 10.3969/j.issn.1673-1379.2006.01.007
    [14] Vazirisereshk M R, Martini A, Strubbe D A, et al. Solid lubrication with MoS2: a review[J]. Lubricants,2019,7 (7):57. doi: 10.3390/lubricants7070057
    [15] Serles P, Gaber K, Pajovic S, et al. High temperature microtribological studies of MoS2 lubrication for low earth orbit[J]. Lubricants,2020,8 (4):49. doi: 10.3390/lubricants8040049
    [16] Fu Y L, Jiang D, Wang D S, et al. Tribological performance of MoS2-WS2 composite film under the atomic oxygen irradiation conditions[J]. Materials (Basel, Switzerland),2020,13 (6):1407. doi: 10.3390/ma13061407
    [17] Gao X M, Hu M, Sun J Y, et al. Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure[J]. Applied Surface Science,2015,330 :30-38. doi: 10.1016/j.apsusc.2014.12.175
    [18] Matsumoto K, Tagawa M, Akiyama M. Tribological characteristics of bonded MoS2 film exposed to AO, UV and real LEO environment in SM/SEED experiment[J]. AIP Conference Proceedings,2009,1087 (1):148-153.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  69
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 录用日期:  2023-01-03
  • 修回日期:  2023-01-03
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回