Functional Development of In-Situ Characterization of X-Ray Photoelectron Spectrometer Under Simulated Space Atomic Oxygen Irradiation
-
摘要: 对现有的X射线光电子能谱仪进行功能开发,在不改变仪器工作原理、不影响现有功能的前提下,将研制的空间交变温度原子氧辐照装置集成到其快速进样室,重点解决集群结构的匹配和性能兼容问题,实现模拟空间交变温度原子氧辐照环境下材料的原位表征功能. 采用Kapton膜的质量损失方法测试空间交变温度原子氧辐照装置的原子氧通量密度,氧气流量、偏压和微波电流均对原子氧通量密度有较大影响. 系统测试表明,原子氧辐照使WS2薄膜表面发生了严重氧化,影响了薄膜的化学组成. 不同温度原子氧辐照导致了不可忽略的化学组成与结构的差异.Abstract: The functional development was carried out on an existing X-ray photoelectron spectrometer. The developed space alternating temperature atomic oxygen (AO) irradiation device was integrated into the fast sampling chamber without changing the operating principle and the existing functions. In-situ characterization of materials under the simulated space alternating temperature AO irradiation was realized through solving the problems of cluster structure matching and performance compatibility. The AO flux of space alternating temperature atomic oxygenirradiation device was measured using the method of mass loss of Kapton. All the oxygen flux, bias pressure and microwave current have great effects on the AO flux. The system test showed that the structure and composition of WS2 film were changed greatly by the AO irradiation, and the difference in chemical composition and structure caused by the AO irradiation at different temperature were not negligible.
-
表 1 不同条件下的原子氧通量密度
Table 1. Flux of AO under different conditions
影响因素 氧气流量/(mL/min) 偏压/V 微波电流/mA 温度/℃ 1 3 5 7 9 0 10 20 30 40 80 100 120 −100 20 +150 原子氧通量密度/
(×1015 atoms/cm2·s)2.9 3.9 4.8 2.6 2.4 3.8 4.8 5.1 4.9 4.8 2.9 3.5 4.8 4.7 4.8 4.7 规律 先增大后减小,5 mL/min时存在极值 先增大后略减小,20 V时最大 微波电流越大,通量密度越大 改变温度,Kapton膜剥蚀率几乎不变 表 2 XPS计算的WS2薄膜元素的相对含量
Table 2. Element contents from XPS analysis of surface of as-deposited and AO irradiated WS2 films
/% 元素 原子百分含量 WS2 film −100 ℃ 20 ℃ 150 ℃ W 11.48 12.76 13.26 12.32 S 20.95 7.11 5.93 6.21 C 55.06 38.06 36.62 39.32 O 12.51 42.07 44.19 42.15 S/W 1.82 0.56 0.45 0.50 -
[1] 王齐华, 吕美, 王廷梅. 聚合物材料的空间摩擦学[M]. 北京: 科学出版社, 2019. [2] 赵雪, 蔡震波. 空间环境与卫星在轨异常分析. 中国空间科学学会空间探测专业委员会第十七次学术会议论文集, 2004: 43-49. [3] Yu Q L, Wang X W, Zhang C Y, et al. Resistance to space atomic oxygen radiation of MAC-based supramolecular gel lubricant containing POSS[J]. Tribology International,2023,177 :107838. doi: 10.1016/j.triboint.2022.107838 [4] Fan X, Shi Y B, Cui M J, et al. MoS2/WS2 nanosheet-based composite films irradiated by atomic oxygen: implications for lubrication in space[J]. ACS Applied Nano Materials,2021,4 :10307-10320. doi: 10.1021/acsanm.1c01816 [5] Xu S S, Sun J Y, Weng L J, et al. In-situ friction and wear responses of WS2 films to space environment: vacuum and atomic oxygen[J]. Applied Surface Science,2018,447 :368-373. doi: 10.1016/j.apsusc.2018.04.012 [6] 高晓明, 胡明, 孙嘉奕, 等. 润滑材料的空间环境效应[J]. 中国材料进展,2017,36(7-8):481-491, 511 doi: 10.7502/j.issn.1674-3962.2017.07.01GAO Xiaoming, HU Ming, SUN Jiayi, et al. Space environment effects on lubricants[J]. Materials China,2017,36 (7-8):481-491, 511. doi: 10.7502/j.issn.1674-3962.2017.07.01 [7] 刘维民, 翁立军, 孙嘉奕. 空间润滑材料与技术手册[M]. 北京: 科学出版社, 2009. [8] Greczynski G, Hultman L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing[J]. Progress in Materials Science,2020,107 :100591. doi: 10.1016/j.pmatsci.2019.100591 [9] Fadley C S. X-ray photoelectron spectroscopy: Progress and perspectives[J]. Journal of Electron Spectroscopy and Related Phenomena,2010,178-179 :2-32. doi: 10.1016/j.elspec.2010.01.006 [10] 苗利静, 江柯敏, 卢焕明. X射线光电子能谱仪的开放使用与管理[J]. 分析测试技术与仪器,2017,23(2):124-126MIAO Lijing, JIANG Kemin, LU Huanming. Opening use and management of X-ray photoelectron spectroscope[J]. Analysis and Testing Technology and Instruments,2017,23 (2):124-126. [11] 章小余, 赵志娟, 刘芬. 样品高度对XPS测试的影响[J]. 分析测试技术与仪器,2013,19(4):244-246ZHANG Xiaoyu, ZHAO Zhijuan, LIU Fen. Effects of sample height on XPS[J]. Analysis and Testing Technology and Instruments,2013,19 (4):244-246. [12] 赵小虎, 沈志刚, 邢玉山, 等. 地面模拟设备中原子氧通量测量方法的比较研究[J]. 航空学报,2008,29(2):478-486 doi: 10.3321/j.issn:1000-6893.2008.02.036ZHAO Xiaohu, SHEN Zhigang, XING Yushan, MA Shu-lin, et al. Comparative study of measurement methods of atomic oxygen flux in ground-based simulation facility[J]. Acta Aeronautica et Astronautica Sinica,2008,29 (2):478-486. doi: 10.3321/j.issn:1000-6893.2008.02.036 [13] 刘向鹏, 童靖宇, 李金洪. 航天器薄膜材料在原子氧环境中退化研究[J]. 航天器环境工程,2006,23(1):39-41, 59 doi: 10.3969/j.issn.1673-1379.2006.01.007LIU Xiangpeng, TONG Jingyu, LI Jinhong. Study on the degradation of spacecraft film material due to AO interaction[J]. Spacecraft Environment Engineering,2006,23 (1):39-41, 59. doi: 10.3969/j.issn.1673-1379.2006.01.007 [14] Vazirisereshk M R, Martini A, Strubbe D A, et al. Solid lubrication with MoS2: a review[J]. Lubricants,2019,7 (7):57. doi: 10.3390/lubricants7070057 [15] Serles P, Gaber K, Pajovic S, et al. High temperature microtribological studies of MoS2 lubrication for low earth orbit[J]. Lubricants,2020,8 (4):49. doi: 10.3390/lubricants8040049 [16] Fu Y L, Jiang D, Wang D S, et al. Tribological performance of MoS2-WS2 composite film under the atomic oxygen irradiation conditions[J]. Materials (Basel, Switzerland),2020,13 (6):1407. doi: 10.3390/ma13061407 [17] Gao X M, Hu M, Sun J Y, et al. Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure[J]. Applied Surface Science,2015,330 :30-38. doi: 10.1016/j.apsusc.2014.12.175 [18] Matsumoto K, Tagawa M, Akiyama M. Tribological characteristics of bonded MoS2 film exposed to AO, UV and real LEO environment in SM/SEED experiment[J]. AIP Conference Proceedings,2009,1087 (1):148-153. -