[1] |
郭艳, 许传芝, 王嘉, 等. RuNi双活性组分负载型TiO2催化CO2甲烷化反应研究[J]. 现代化工,2021,41(6):110-113, 118GUO Yan, XU Chuanzhi, WANG Jia, et al. RuNi dual active components supported TiO2 catalyst for CO2 methanation[J]. Modern Chemical Industry,2021,41 (6):110-113, 118.
|
[2] |
郭艳, 许传芝, 王嘉, 等. 光催化材料原位红外池系统的研制[J]. 分析测试技术与仪器,2020,26(4):265-269 doi: 10.16495/j.1006-3757.2020.04.006GUO Yan, XU Chuanzhi, WANG Jia, et al. Development of in-situ infrared spectroscopic cell system for photocatalytic materials[J]. Analysis and Testing Technology and Instruments,2020,26 (4):265-269. doi: 10.16495/j.1006-3757.2020.04.006
|
[3] |
Dong F, Han W G, Guo Y, et al. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs[J]. Chemical Engineering Journal,2021,405 :126948. doi: 10.1016/j.cej.2020.126948
|
[4] |
Huang X S, Dong F, Zhang G D, et al. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal,2021,419 :129572. doi: 10.1016/j.cej.2021.129572
|
[5] |
Fu Z H, Zhang G D, Han W L, et al. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating[J]. Chemical Engineering Journal,2021,426 :131334. doi: 10.1016/j.cej.2021.131334
|
[6] |
Ling W T, Zhao H J, Wu S L, et al. A CeCoOx Core/Nb2O5@TiO2 double-shell nanocage catalyst demonstrates high activity and water resistance for catalytic combustion of o-dichlorobenzene[J]. Chemistry-A European Journal,2021,27 (40):10356-10368. doi: 10.1002/chem.202100392
|
[7] |
Wu S L, Zhao H J, Dong F, et al. Construction of superhydrophobic Ru/TiCeOx catalysts for the enhanced water resistance of o-dichlorobenzene catalytic combustion[J]. ACS Applied Materials & Interfaces,2021,13 (2):2610-2621.
|
[8] |
Zhang L W, Long R, Zhang Y M, et al. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts[J]. Angewandte Chemie (International Ed in English),2020,59 (15):6224-6229. doi: 10.1002/anie.201915774
|
[9] |
Zhang Y J, Xu Z F, Wang Q, et al. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction[J]. Applied Catalysis B:Environmental,2021,299 :120679. doi: 10.1016/j.apcatb.2021.120679
|
[10] |
Zhao H J, Han W L, Tang Z C. Tailored design of high-stability CoMn15Ox@TiO2 double-wall nanocages derived from Prussian blue analogue for catalytic combustion of o-dichlorobenzene[J]. Applied Catalysis B:Environmental,2020,276 :119133. doi: 10.1016/j.apcatb.2020.119133
|
[11] |
Shen H Y, Zhao H H, Yang J, et al. The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydroge-nation[J]. New Journal of Chemistry,2022,46 (7):3095-3105. doi: 10.1039/D1NJ05487B
|
[12] |
Wei L J, Huang G, Zhang Y J. Dependence of the intrinsic phase structure of Bi2O3 catalysts on photocatalytic CO2 reduction[J]. Catalysis Science & Technology,2021,11 (6):2021-2025.
|