扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高低温环境下红外光谱原位表征系统的研制

郭艳 许传芝 王嘉 张乐芬 牛建中

郭艳, 许传芝, 王嘉, 张乐芬, 牛建中. 高低温环境下红外光谱原位表征系统的研制[J]. 分析测试技术与仪器, 2023, 29(1): 43-48. doi: 10.16495/j.1006-3757.2023.01.007
引用本文: 郭艳, 许传芝, 王嘉, 张乐芬, 牛建中. 高低温环境下红外光谱原位表征系统的研制[J]. 分析测试技术与仪器, 2023, 29(1): 43-48. doi: 10.16495/j.1006-3757.2023.01.007
GUO Yan, XU Chuanzhi, WANG Jia, ZHANG Lefen, NIU Jianzhong. Development of Infrared Spectroscopic In Situ Characterization System Under High and Low Temperature Environments[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 43-48. doi: 10.16495/j.1006-3757.2023.01.007
Citation: GUO Yan, XU Chuanzhi, WANG Jia, ZHANG Lefen, NIU Jianzhong. Development of Infrared Spectroscopic In Situ Characterization System Under High and Low Temperature Environments[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 43-48. doi: 10.16495/j.1006-3757.2023.01.007

高低温环境下红外光谱原位表征系统的研制

doi: 10.16495/j.1006-3757.2023.01.007
基金项目: 中国科学院兰州资源环境科学大型仪器区域中心仪器设备功能开发技术创新项目(lz202074)
详细信息
    作者简介:

    郭艳(1984−),女,工程师,从事分子光谱分析测试相关工作,E-mail:gouyan@licp.cas.cn

    通讯作者:

    牛建中(1963−),男,正高级工程师,从事大型仪器相关工作,E-mail:njz@licp.cas.cn

  • 中图分类号: O657. 33; TH74

Development of Infrared Spectroscopic In Situ Characterization System Under High and Low Temperature Environments

Funds: Lanzhou Regional Center for Resources and Environment Science, Chinese Academy of Sciences, Large-Scale Instrument Function Development Technology Innovation Project (lz202074)
  • 摘要: 研制的高低温环境下红外光谱原位表征系统将红外光谱同高低温原位红外体系组合起来,为高低温原位红外反应机理的深入研究提供有效信息,同时为构建高效稳定的原位红外研究提供新的技术支撑. 高低温环境下红外光谱原位表征系统通过液氮制冷与加热调控,在真空或常压的状态下为光谱测量提供低温恒温环境,并可在一定的温度范围内提供可进行原位预处理或原位反应的高温环境. 高低温环境下红外光谱原位表征系统可以适用于任何物质研究,尤其适用于液氮环境下气体吸附研究,比如反应中间体的过程捕捉、探针分子弱吸附方面的研究、单原子催化剂的鉴定以及探针分子吸附表征等. 因而高低温环境下红外光谱原位表征系统在这些领域具有极高的通用性和实用性.
  • 图  1  高低温环境下红外光谱原位表征系统技术路线图

    Figure  1.  Technology roadmap of infrared spectroscopic in situ characterization system under high and low temperature environments

    图  2  高低温原位红外池设计加工草图

    Figure  2.  Design and processing sketch of high and low temperature in situ infrared cell

    图  3  高低温原位红外池俯视和整体透视设计加工草图

    Figure  3.  Top view and overall perspective design processing sketch of high and low temperature in situ infrared cell

    图  4  高低温原位红外池设计图

    Figure  4.  Design of high and low temperature in situ infrared cell

    图  5  高低温原位红外池设计效果图

    Figure  5.  Design rendering of high and low temperature in situ infrared cell

    图  6  腔帽设计加工侧视图

    Figure  6.  Side view of cavity cap design machining

    图  7  腔帽设计加工俯视图和实物图

    Figure  7.  Top view and physical drawings of cavity cap design and machining

    图  8  温控系统

    Figure  8.  Temperature control system

    图  9  (a)铜催化剂低温吸附CO,(b)铜催化剂在不同分压下吸附CO

    Figure  9.  (a) Low temperature adsorption of CO by copper catalyst, (b) adsorption of CO by copper catalysts at different partial pressures

    图  10  Ru-Cu催化剂(a)常温吸附和(b)低温吸附CO红外谱图对比

    Figure  10.  Comparison of infrared spectra of CO adsorption at (a) normal temperature and (b) low temperature of Ru-Cu catalyst

  • [1] 郭艳, 许传芝, 王嘉, 等. RuNi双活性组分负载型TiO2催化CO2甲烷化反应研究[J]. 现代化工,2021,41(6):110-113, 118

    GUO Yan, XU Chuanzhi, WANG Jia, et al. RuNi dual active components supported TiO2 catalyst for CO2 methanation[J]. Modern Chemical Industry,2021,41 (6):110-113, 118.
    [2] 郭艳, 许传芝, 王嘉, 等. 光催化材料原位红外池系统的研制[J]. 分析测试技术与仪器,2020,26(4):265-269 doi: 10.16495/j.1006-3757.2020.04.006

    GUO Yan, XU Chuanzhi, WANG Jia, et al. Development of in-situ infrared spectroscopic cell system for photocatalytic materials[J]. Analysis and Testing Technology and Instruments,2020,26 (4):265-269. doi: 10.16495/j.1006-3757.2020.04.006
    [3] Dong F, Han W G, Guo Y, et al. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs[J]. Chemical Engineering Journal,2021,405 :126948. doi: 10.1016/j.cej.2020.126948
    [4] Huang X S, Dong F, Zhang G D, et al. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal,2021,419 :129572. doi: 10.1016/j.cej.2021.129572
    [5] Fu Z H, Zhang G D, Han W L, et al. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating[J]. Chemical Engineering Journal,2021,426 :131334. doi: 10.1016/j.cej.2021.131334
    [6] Ling W T, Zhao H J, Wu S L, et al. A CeCoOx Core/Nb2O5@TiO2 double-shell nanocage catalyst demonstrates high activity and water resistance for catalytic combustion of o-dichlorobenzene[J]. Chemistry-A European Journal,2021,27 (40):10356-10368. doi: 10.1002/chem.202100392
    [7] Wu S L, Zhao H J, Dong F, et al. Construction of superhydrophobic Ru/TiCeOx catalysts for the enhanced water resistance of o-dichlorobenzene catalytic combustion[J]. ACS Applied Materials & Interfaces,2021,13 (2):2610-2621.
    [8] Zhang L W, Long R, Zhang Y M, et al. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts[J]. Angewandte Chemie (International Ed in English),2020,59 (15):6224-6229. doi: 10.1002/anie.201915774
    [9] Zhang Y J, Xu Z F, Wang Q, et al. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction[J]. Applied Catalysis B:Environmental,2021,299 :120679. doi: 10.1016/j.apcatb.2021.120679
    [10] Zhao H J, Han W L, Tang Z C. Tailored design of high-stability CoMn15Ox@TiO2 double-wall nanocages derived from Prussian blue analogue for catalytic combustion of o-dichlorobenzene[J]. Applied Catalysis B:Environmental,2020,276 :119133. doi: 10.1016/j.apcatb.2020.119133
    [11] Shen H Y, Zhao H H, Yang J, et al. The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydroge-nation[J]. New Journal of Chemistry,2022,46 (7):3095-3105. doi: 10.1039/D1NJ05487B
    [12] Wei L J, Huang G, Zhang Y J. Dependence of the intrinsic phase structure of Bi2O3 catalysts on photocatalytic CO2 reduction[J]. Catalysis Science & Technology,2021,11 (6):2021-2025.
  • 加载中
图(10)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  98
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 录用日期:  2023-02-13
  • 修回日期:  2023-02-13
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回