扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

场发射扫描电子显微镜观测弱导电金属有机框架材料的参数探究

邢宏娜 常帅 冯伟 李兴华

邢宏娜, 常帅, 冯伟, 李兴华. 场发射扫描电子显微镜观测弱导电金属有机框架材料的参数探究[J]. 分析测试技术与仪器, 2023, 29(2): 160-169. doi: 10.16495/j.1006-3757.2023.02.004
引用本文: 邢宏娜, 常帅, 冯伟, 李兴华. 场发射扫描电子显微镜观测弱导电金属有机框架材料的参数探究[J]. 分析测试技术与仪器, 2023, 29(2): 160-169. doi: 10.16495/j.1006-3757.2023.02.004
XING Hongna, CHANG Shuai, FENG Wei, LI Xinghua. Exploration of Test Parameters for Weakly Conductive Metal-Organic Framework Materials by Field Emission Scanning Electron Microscopy[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 160-169. doi: 10.16495/j.1006-3757.2023.02.004
Citation: XING Hongna, CHANG Shuai, FENG Wei, LI Xinghua. Exploration of Test Parameters for Weakly Conductive Metal-Organic Framework Materials by Field Emission Scanning Electron Microscopy[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 160-169. doi: 10.16495/j.1006-3757.2023.02.004

场发射扫描电子显微镜观测弱导电金属有机框架材料的参数探究

doi: 10.16495/j.1006-3757.2023.02.004
基金项目: 国家自然科学基金资助项目(11504293)
详细信息
    作者简介:

    邢宏娜(1995−),女,硕士,工程师,主要从事电子显微镜的测试管理,E-mail:hongnxing@nwu.edu.cn

    通讯作者:

    李兴华(1986−),男,博士,教授,从事大型仪器管理和微波吸收、能源存储领域科学研究,E-mail:lixinghua04@gmail.com

  • 中图分类号: O657; O762

Exploration of Test Parameters for Weakly Conductive Metal-Organic Framework Materials by Field Emission Scanning Electron Microscopy

Funds: National Natural Science Foundation of China (11504293)
  • 摘要: 金属有机框架材料(MOFs)的形貌结构对其性能应用具有很大影响,但MOFs普遍存在导电性差且对电子束敏感等问题,在进行扫描电子显微镜(SEM)测试时容易损伤样品,发生荷电现象. 因此摸索合适的测试参数,对获得高质量的MOFs扫描电子显微镜图像具有重要意义. 以MIL-101(Cr)、Fe-MOF、Mn-MOF、ZIF-67(Co)这4种典型的MOFs为例,主要探究了加速电压、电子束流、工作距离、探头及喷金对其成像效果的影响. 结果表明,升高加速电压可有效提高图像分辨率,但同时电子束穿入深度增大,可能导致电荷击穿效应对其表面结构造成破坏. 适当增大束流可提高图像信噪比,但过大的束流会导致纳米颗粒边缘变钝,因此选用0.1~0.4 nA中等束流为佳. 在选择探头时需注意,艾弗哈特-索恩利探头(ETD)和透镜内二次电子(T2)探头所成图像立体感较好,透镜内背散射电子(T1)探头的立体感弱,但衬度较好,柱内二次电子(T3)探头分辨率最佳,但更容易荷电,显得颗粒扁平. 而喷金处理可有效提高样品的导电性. 以上结果对使用SEM探究MOFs形貌结构具有一定的借鉴作用.
  • 图  1  不同加速电压下MIL-101(Cr)的SEM图像

    (a)3 kV,(b)5 kV,(c)8 kV,(d)10 kV,(e)15 kV,(f)20 kV,(g)30 kV,(h)加速电压与图像分辨率的关系曲线图

    Figure  1.  SEM images of MIL-101(Cr) at different accelerating voltages

    (a) 3 kV, (b) 5 kV, (c) 8 kV, (d) 10 kV, (e) 15 kV, (f) 20 kV, (g) 30 kV, (h) relationship curve between acceleration voltage and image resolution

    图  2  MIL-101(Cr)的SEM图像

    (a)~(d)加速电压为8 kV,不同束流6.0(25 pA)、8.0(0.1 nA)、10.0(0.4 nA)、12.0(1.6 nA),(e)~(h)不同工作距离6、8、10、12 mm,(i)~(k)不同扫描探头T1、T2、T3,(l)喷金处理(20 s)

    Figure  2.  SEM images of MIL-101(Cr)

    (a)~(d) accelerating voltages: 8 kV, different spot sizes: 6.0 (25 pA), 8.0 (0.1 nA), 10.0 (0.4 nA), 12.0 (1.6 nA), (e)~(h) different working distances: 6, 8, 10, 12 mm, (i)~(k) different detectors: T1, T2, T3, (l) after spraying gold treatment (20 s)

    图  3  不同加速电压下Fe-MOF的SEM图像

    (a)3 kV,(b)5 kV,(c)8 kV,(d)10 kV,(e)15 kV,(f)20 kV,(g)30 kV,(h)加速电压与图像分辨率的关系曲线图

    Figure  3.  SEM images of Fe-MOF at different accelerating voltages

    (a) 3 kV, (b) 5 kV, (c) 8 kV, (d) 10 kV, (e) 15 kV, (f) 20 kV, (g) 30 kV, (h) relation curve between acceleration voltage and image resolution

    图  4  Fe-MOF的SEM图像

    (a)~(d)加速电压为8 kV,不同束流6.0(25 pA)、8.0(0.1 nA)、10.0(0.4 nA)、12.0(1.6 nA),(e)~(h)不同工作距离6、8、10、12 mm,(i)~(k)不同扫描探头T1、T2、T3,(l)喷金处理(20 s)

    Figure  4.  SEM images of Fe-MOF

    (a)~(d) accelerating voltages: 8 kV, different spot sizes: 6.0 (25 pA), 8.0 (0.1 nA), 10.0 (0.4 nA), 12.0 (1.6 nA), (e)~(h) different working distances: 6, 8, 10, 12 mm, (i)~(k) different detectors: T1, T2, T3, (l) after spraying gold treatment (20 s)

    图  5  不同加速电压下Mn-MOF的SEM图像

    (a)3 kV,(b)5 kV,(c)8 kV,(d)10 kV,(e)15 kV,(f)20 kV,(g)30 kV,(h)加速电压与图像分辨率的关系曲线图

    Figure  5.  SEM images of Mn-MOF at different accelerating voltages

    (a) 3 kV, (b) 5 kV, (c) 8 kV, (d) 10 kV, (e) 15 kV, (f) 20 kV, (g) 30 kV, (h) relation curve between acceleration voltage and image resolution

    图  6  Mn-MOF的SEM图像

    (a)~(d)加速电压为8 kV,不同束流6.0(25 pA)、8.0(0.1 nA)、10.0(0.4 nA)、12.0(1.6 nA),(e)~(h)不同工作距离6、8、10、12 mm,(i)~(k)不同扫描探头T1、T2、T3,(l)喷金处理(20 s)

    Figure  6.  SEM images of Mn-MOF

    (a)~(d) accelerating voltages: 8 kV, different spot sizes: 6.0 (25 pA), 8.0 (0.1 nA), 10.0 (0.4 nA), 12.0 (1.6 nA), (e)~(h) different working distances: 6, 8, 10, 12 mm, (i)~(k) different detectors: T1, T2, T3, (l) after spraying gold treatment (20 s)

    图  7  不同加速电压下ZIF-67(Co)的SEM图像

    (a)3 kV,(b)5 kV,(c)8 kV,(d)10 kV,(e)15 kV,(f)20 kV,(g)30 kV,(h)加速电压与图像分辨率的关系曲线图

    Figure  7.  SEM images of ZIF-67(Co) at different accelerating voltages

    (a) 3 kV, (b) 5 kV, (c) 8 kV, (d) 10 kV, (e) 15 kV, (f) 20 kV, (g) 30 kV, (h) relation curve between acceleration voltage and image resolution

    图  8  ZIF-67(Co)的SEM图像

    (a)~(d)加速电压为8 kV,不同束流6.0(25 pA)、8.0(0.1 nA)、10.0(0.4 nA)、12.0(1.6 nA),(e)~(h)不同工作距离6、8、10、12 mm,(i)~(k)不同扫描探头T1、T2、T3,(l)喷金处理(20 s)

    Figure  8.  SEM images of ZIF-67(Co)

    (a)~(d) accelerating voltages: 8 kV , different spot sizes: 6.0 (25 pA), 8.0 (0.1 nA), 10.0 (0.4 nA), 12.0 (1.6 nA), (e)~(h) different working distances: 6, 8, 10, 12 mm, (i)~(k) different detectors: T1, T2, T3, (l) after spraying gold treatment (20 s)

  • [1] Ma Y H, Zhang X H, Chen X G. Observation on non-conductive powder samples by scanning electron microscope[J]. Applied Mechanics and Materials,2013,320 :226-229. doi: 10.4028/www.scientific.net/AMM.320.226
    [2] 陈佳阳, 陈耀文. 蔡司GeminiSEM 300型场发射扫描电镜常见故障的预防、排除和磁性样品的测试方法[J]. 电子显微学报,2020,39(4):423-425 doi: 10.3969/j.issn.1000-6281.2020.04.013

    CHEN Jiayang, CHEN Yaowen. Precaution and elimination of common faults in Zeiss GeminiSEM300 field emission scanning electron microscope and the test methods for magnetic specimens[J]. Journal of Chinese Electron Microscopy Society,2020,39 (4):423-425. doi: 10.3969/j.issn.1000-6281.2020.04.013
    [3] 高翔, 朱紫瑞, 孙伟, 等. 场发射扫描电镜荷电现象的研究及参数优化[J]. 真空科学与技术学报,2018,38(11):1008-1012 doi: 10.13922/j.cnki.cjovst.2018.11.16

    GAO Xiang, ZHU Zirui, SUN Wei, et al. Solutions to charge accumulation on low conductivity surfaces in imaging with scanning electron microscopy[J]. Chinese Journal of Vacuum Science and Technology,2018,38 (11):1008-1012. doi: 10.13922/j.cnki.cjovst.2018.11.16
    [4] 彭宇, 张之恒, 安婷, 等. 导电环氧树脂消除扫描电子显微镜图像荷电问题的原理与实践[J]. 分析测试技术与仪器,2022,28(2):125-131 doi: 10.16495/j.1006-3757.2022.02.003

    PENG Yu, ZHANG Zhiheng, AN Ting, et al. Principle and practice of conductive epoxy resin to eliminate charging problem in scanning electron microscope images[J]. Analysis and Testing Technology and Instruments,2022,28 (2):125-131. doi: 10.16495/j.1006-3757.2022.02.003
    [5] Wen Q, Ding Z, Kou F J, et al. Research and application of S-4800 scanning electron microscope in modern testing and analysis technology[J]. Applied Mechanics & Materials,2014 (668-669):936-939.
    [6] 徐国荣, 黄琳, 丁宏刚, 等. 燃煤超细颗粒物的扫描电镜图像优化方法[J]. 中国测试,2022,48(2):113-117, 153

    XU Guorong, HUANG Lin, DING Honggang, et al. SEM image optimization method of coal-fired ultrafine particles[J]. China Measurement & Test,2022,48 (2):113-117, 153.
    [7] 赵素玲, 兰芳, 陈晶. 场发射扫描电镜研究实验条件对片形Fe@Ag复合粒子表面形貌的影响[J]. 分析仪器,2013(4):74-78

    ZHAO Suling, LAN Fang, CHEN Jing. Influence of experimental conditions on the surface morphology of Fe@Ag core-shell composite particles[J]. Analytical Instrumentation,2013 (4):74-78.
    [8] Zhang Z C, Chen Y F, Xu X B, et al. Well-defined metal-organic framework hollow nanocages[J]. Angewandte Chemie (International Ed in English),2014,53 (2):429-433. doi: 10.1002/anie.201308589
    [9] Wang L Y, Xu H, Gao J K, et al. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications[J]. Coordination Chemistry Reviews,2019,398 :213016. doi: 10.1016/j.ccr.2019.213016
    [10] 刘志超, 穆洪亮, 李艳, 等. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展,2021,33(11):2002-2023

    LIU Zhichao, MU Hongliang, LI Yan, et al. Application of metal-organic frameworks-derived conversion-type anodes in alkali metal-ion batteries[J]. Progress in Chemistry,2021,33 (11):2002-2023.
    [11] Li Y Z, Fu Z H, Xu G. Metal-organic framework nanosheets: preparation and applications[J]. Coordination Chemistry Reviews,2019,388 :79-106. doi: 10.1016/j.ccr.2019.02.033
    [12] 朱刚, 李辉, 强明礼, 等. 金属-有机骨架在生物质及其衍生化学品中的应用[J]. 林业工程学报,2021,6(6):23-34

    ZHU Gang, LI Hui, QIANG Mingli, et al. Application and research progress of metal-organic framework materials in biomass and its derived chemicals[J]. Journal of Forestry Engineering,2021,6 (6):23-34.
    [13] Qiu S L, Xue M, Zhu G S. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews,2014,43 (16):6116-6140. doi: 10.1039/C4CS00159A
    [14] 廖学巍, 刘旸, 王琛. 纳米尺度MOFs在肿瘤及肿瘤标志物生物学成像中的研究进展[J]. 分析测试学报,2022,41(4):476-485 doi: 10.19969/j.fxcsxb.21120704

    LIAO Xuewei, LIU Yang, WANG Chen. Recent progress in nanoscale MOFs for biological imaging of tumors and tumor markers[J]. Journal of Instrumental Analysis,2022,41 (4):476-485. doi: 10.19969/j.fxcsxb.21120704
    [15] Zhou N, Su F F, Guo C P, et al. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: a highly sensitive and selective platform for detecting cancer markers[J]. Biosensors and Bioelectronics,2019,123 :51-58. doi: 10.1016/j.bios.2018.09.079
    [16] Li J, Wang H, Yuan X Z, et al. Metal-organic framework membranes for wastewater treatment and water regeneration[J]. Coordination Chemistry Reviews,2020,404 :213116. doi: 10.1016/j.ccr.2019.213116
    [17] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程,2021,49(9):27-40 doi: 10.11868/j.issn.1001-4381.2020.000599

    QIAO Junyu, LI Xiutao. Progress in preparation and application of carbon nanotube composites based on MOFs[J]. Journal of Materials Engineering,2021,49 (9):27-40. doi: 10.11868/j.issn.1001-4381.2020.000599
    [18] Rahmanifar M S, Hesari H, Noori A, et al. A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material[J]. Electrochimica Acta,2018,275 :76-86. doi: 10.1016/j.electacta.2018.04.130
    [19] 赵健全, 吴金金, 卢照, 等. 基于普通模式和电子束减速模式的加速电压对FESEM图像的影响[J]. 分析仪器,2020(2):90-96 doi: 10.3969/j.issn.1001-232x.2020.02.018

    ZHAO Jianquan, WU Jinjin, LU Zhao, et al. Impact of different acceleration voltages on FESEM images under normal mode and beam deceleration mode[J]. Analytical Instrumentation,2020 (2):90-96. doi: 10.3969/j.issn.1001-232x.2020.02.018
    [20] Gavrilenko V P, Novikov Y A, Rakov A V, et al. Measurement of the parameters of the electron beam of a scanning electron microscope[C]//NanoScience + Engineering. Proc SPIE 7042, Instrumentation, Metrology, and Standards for Nanomanufacturing II, San Diego, California, USA. 2008, 7042: 107-118.
    [21] 曹水良, 梁志红, 尹平河. 不同加速电压对不导电样品扫描电镜图像的影响[J]. 暨南大学学报(自然科学与医学版),2014,35(4):357-360

    CAO Shuiliang, LIANG Zhihong, YIN Pinghe. The influence of non-conductive sample SEM images under different acceleration voltage[J]. Journal of Jinan University (Natural Science & Medicine Edition),2014,35 (4):357-360.
  • 加载中
图(8)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  16
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 录用日期:  2023-04-13
  • 修回日期:  2023-04-13
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回