扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱性嫩黄O的光电脱色工艺研究

倪赛迪 林秋涵 何碧珊 陈晓达 郭妙柃 栗鹏辉 林佳丽 陈毅挺

倪赛迪, 林秋涵, 何碧珊, 陈晓达, 郭妙柃, 栗鹏辉, 林佳丽, 陈毅挺. 碱性嫩黄O的光电脱色工艺研究[J]. 分析测试技术与仪器, 2023, 29(2): 178-184. doi: 10.16495/j.1006-3757.2023.02.006
引用本文: 倪赛迪, 林秋涵, 何碧珊, 陈晓达, 郭妙柃, 栗鹏辉, 林佳丽, 陈毅挺. 碱性嫩黄O的光电脱色工艺研究[J]. 分析测试技术与仪器, 2023, 29(2): 178-184. doi: 10.16495/j.1006-3757.2023.02.006
NI Saidi, LIN Qiuhan, HE Bishan, CHEN Xiaoda, GUO Miaoling, LI Penghui, LIN Jiali, CHEN Yiting. Study on Photoelectric Decolorization of Auramine O[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 178-184. doi: 10.16495/j.1006-3757.2023.02.006
Citation: NI Saidi, LIN Qiuhan, HE Bishan, CHEN Xiaoda, GUO Miaoling, LI Penghui, LIN Jiali, CHEN Yiting. Study on Photoelectric Decolorization of Auramine O[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 178-184. doi: 10.16495/j.1006-3757.2023.02.006

碱性嫩黄O的光电脱色工艺研究

doi: 10.16495/j.1006-3757.2023.02.006
基金项目: 国家自然科学基金项目(22004053),福建省自然科学基金项目(2022J011114,2021J05203),福建省一流本科课程(2020,仪器分析),闽江学院校长基金(103952022130,103952022132)
详细信息
    作者简介:

    倪赛迪(2000−),男,大学本科,专业方向:应用化学,E-mail:2276925610@qq.com

    通讯作者:

    陈毅挺(1978−),男,教授,博士,从事化学传感器研究,E-mail:fjcyt@foxmail.com

  • 中图分类号: O657. 3

Study on Photoelectric Decolorization of Auramine O

Funds: National Natural Science Foundation of China (22004053), National Science Foundation of Fujian Province (2022J011114,2021J05203), First-Class Undergraduate Courses in Fujian Province (2020, Instrumental analysis), Transforming Scientific Research Achievements into Research Experiment Teaching Project of Minjiang Univers (103952022130, 103952022132)
  • 摘要: 以掺杂氟的SnO2透明导电玻璃(FTO导电玻璃)为阳极,通过单因素和响应面法优化了碱性嫩黄O的光电降解工艺. 探讨了TiO2、NaCl质量浓度、环境酸度、降解电压与施加时间等因素对脱色率的影响,并利用响应面法优化了脱色条件. 结果表明:在TiO2质量浓度为0.13 g/L、NaCl质量浓度为0.43 g/L、环境初始酸度为8.0,施加14.0 V的降解电压30 min后,碱性嫩黄O脱色率可达95.91%.
  • 图  1  碱性嫩黄O的分子结构

    Figure  1.  Structure of Auramine O

    图  2  碱性嫩黄O的紫外吸收光谱

    Figure  2.  UV absorption spectrum of Auramine O

    图  3  TiO2质量浓度对碱性嫩黄O脱色率的影响

    Figure  3.  Effect of mass concentration of TiO2 on decolorization rate of Auramine O

    图  4  不同电解质对碱性嫩黄O脱色率的影响

    (a)氯化钠,(b)硝酸钠,(c)硫酸钠

    Figure  4.  Effect of types of electrolytes on decolorization rate of Auramine O

    (a) NaCl, (b) NaNO3, (c) Na2SO4

    图  5  NaCl 质量浓度对碱性嫩黄O脱色率的影响

    Figure  5.  Effect of mass concentration of NaCl on decolorization rate of Auramine O

    图  6  pH对碱性嫩黄O脱色率的影响

    Figure  6.  Effect of pH on decolorization rate of Auramine O

    图  7  降解电压对碱性嫩黄O脱色率的影响

    Figure  7.  Effect of voltage of electrolysis on decolorization rate of Auramine O

    图  8  降解时间对碱性嫩黄O脱色率的影响

    Figure  8.  Effect of degradation time on decolorization rate of Auramine O

    图  9  交互项对脱色率影响的响应面图

    Figure  9.  Response surface diagrams of effects of interaction terms on removal rate

    图  10  不同降解方式下碱性嫩黄O的脱色率

    (a)光电催化,(b)电化学降解,(c)光催化

    Figure  10.  Decolorization rates of Auramine O under different degradation methods

    表  1  Box-Benhnken 试验设计因素和水平

    Table  1.   Factors and levels of Box-Benhnken experiment design

    编码水平X1/(g/L)X2/(g/L)X3/V
    −10.050.29
    00.100.512
    10.150.815
    下载: 导出CSV

    表  2  响应面分析方案及试验结果

    Table  2.   Design and results of response surface analysis

    序号[TiO2]/(g/L)[NaCl]/(g/L)E/VR/%
    10.100.51292.15
    20.050.21265.62
    30.150.81288.81
    40.100.51285.98
    50.100.51295.86
    60.100.2968.87
    70.100.81590.69
    80.050.81283.16
    90.100.21592.02
    100.150.51593.26
    110.050.5961.02
    120.100.8983.12
    130.050.51583.55
    140.100.51290.42
    150.100.51293.67
    160.150.21290.69
    170.150.5989.88
    下载: 导出CSV

    表  3  响应面二次回归模型的方差分析

    Table  3.   Analysis of variance for response surface quadratic regression equation

    来源自由度平方和均方FP
    模型91 646.901 646.9019.050.000 4**
    [TiO2]1600.14600.1462.47<0.000 1**
    [NaCl]1102.10102.1010.630.013 9*
    E1400.87400.8741.370.000 3**
    [TiO2]×[NaCl]194.2894.289.810.016 5*
    [TiO2E191.6891.689.540.017 6*
    [NaCl]×E160.6860.686.320.040 2*
    [TiO2]21134.26134.2613.980.007 3**
    [NaCl]2164.0264.026.660.036 4*
    E2168.7868.787.160.031 7*
    残差767.249.61
    失拟项411.533.840.280.840 7
    纯误差455.7113.93
    总和161 714.15
    注:*表示在0.05水平上显著,**表示在0.01水平上极显著
    下载: 导出CSV
  • [1] Li W D, Qiu J P, Baharinikoo L, et al. Dispersive solid phase microextraction based on magnesium oxide nano-particles for preconcentration of auramine O and methylene blue from water samples[J]. Scientific Reports,2022,12 :12806. doi: 10.1038/s41598-022-16948-z
    [2] 吴秋华. 新生态二氧化锰处理染料废水[J]. 化学教学,2004(1):7-9.
    [3] 游婷婷. 插钛膨胀石墨的制备及其应用研究[D]. 河北: 河北大学, 2010

    YONG Tingting. Preparation and application of expanded graphite loaded with Titania[D]. Hebei: Hebei University, 2010.
    [4] Jain B, Hashmi A, Sanwaria S, et al. Catalytic properties of graphene oxide synthesized by a “green” process for efficient abatement of auramine-O cationic dye[J]. Analytical Chemistry Letters,2020,10 (1):21-32. doi: 10.1080/22297928.2020.1747536
    [5] 白波, 田维锋, 薛小强, 等. Fe3+@酵母菌非均相UV-Fenton降解染料废水[J]. 化学工程,2010,38(8):64-68

    BAI Bo, TIAN Weifeng, XUE Xiaoqiang, et al. Heterogeneous UV-Fenton degradation of dye effluents by using Fe3+@yeasts[J]. Chemical Engineering (China),2010,38 (8):64-68.
    [6] Gupta A, Khosla N, Govindasamy V, et al. Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water[J]. Applied Nanoscience,2020,10 (11):4191-4205. doi: 10.1007/s13204-020-01540-6
    [7] 孙旋, 刘红, 倪昕. Fe2O3-TiO2光催化剂的制备及其对碱性嫩黄的降解[J]. 水处理技术,2008,34(4):61-64

    SUN Xuan, LIU Hong, NI Xin. Preparation of Fe2O3-TiO2 nano-particle composite photocatalyst and degradation of auramine[J]. Technology of Water Treatment,2008,34 (4):61-64.
    [8] 李定颐. 单颗粒SERS基底用于污染物的灵敏检测和光催化降解过程原位监测[D]. 湖北: 华中科技大学, 2018

    LI Dingyi. Single-particle SERS substrate: application in detection and in situ SERS monitioring photocatalytic degradation process of pollutants[D]. Hubei: Huazhong University of Science and Technology, 2018.
    [9] 王元芳, 尹孟华, 钱佳丽, 等. 混凝与光催化联用处理水体中的复合染料[J]. 化工进展,2020,39(12):5290-5298

    WANG Yuanfang, YIN Menghua, QIAN Jiali, et al. Color removal of composite dye by coagulation-photocatalysis[J]. Chemical Industry and Engineering Progress,2020,39 (12):5290-5298.
    [10] Sun H S, Qin J, Yi L D, et al. A new process for degradation of auramine O dye and heat generation based on orifice plate hydrodynamic cavitation (HC): parameter optimization and performance analyses[J]. Process Safety and Environmental Protection,2022,161 :669-683. doi: 10.1016/j.psep.2022.03.058
    [11] Orimolade B O, Idris A O, Akanji S P, et al. Solar-light-responsive nanomaterials for the photoelectrocatalytic degradation of stubborn pollutants[J]. Coatings,2023,13 (1):159. doi: 10.3390/coatings13010159
    [12] 秦丽, 尤晓亭, 唐录华, 等. 基于纳米材料修饰的碱性嫩黄O印迹传感器的制备及其应用[J]. 应用化学,2022,39(12):1880-1890

    QIN Li, YOU Xiaoting, TANG Luhua, et al. Preparation and application of auramine O imprinted sensor based on nanomaterials modification[J]. Chinese Journal of Applied Chemistry,2022,39 (12):1880-1890.
    [13] 王晓钰. 纳米TiO2光催化氧化法处理碱性紫5BN染料废水的研究[J]. 新乡师范高等专科学校学报,2006,20(2):27-30

    WANG Xiaoyu. A study of treating methyl violet 5BN waste water by nano titanium dioxide photocatalytic oxidation process[J]. Journal of Xinxiang Teachers College,2006,20 (2):27-30.
    [14] 方建章, 蒲玉英, 廖锦云, 等. 电化学生成H2O2-TiO2/UV降解碱性品红研究[J]. 华南师范大学学报(自然科学版),2006,38(3):74-80

    FANG Jianzhang, PU Yuying, LIAO Jinyun, et al. Degradation of basic violet by electrogenerated H2O2-TiO2/UV[J]. Journal of South China Normal University (Natural Science Edition),2006,38 (3):74-80.
    [15] 杨利敬. 电化学氧化法与纳米Fe3O4催化H2O2降解橙G的研究[D]. 河南: 河南师范大学, 2015

    YANG Lijing. Study on degradation of orange G by two methods: electrochemical oxidation process and nano Fe3O4 catalytic hydrogen peroxide oxidation process[D]. Henan: Henan Normal University, 2015.
    [16] 李树权, 陈维洪, 黄雪萍, 等. 活性炭-纳米二氧化钛光电催化中性红的基础研究[J]. 广东化工,2015,42(1):34-36

    LI Shuquan, CHEN Weihong, HUANG Xueping, et al. Study on photoelectrocatalytic degradation of toluylene red[J]. Guangdong Chemical Industry,2015,42 (1):34-36.
    [17] 李亚峰, 于佳辉. UV/负载型TiO2光催化剂降解染料废水的试验研究[J]. 建筑与预算,2018(3):37-40

    LI Yafeng, YU Jiahui. Experimental study on degradation of dye wastewater by UV/supported TiO2 photocatalyst[J]. Construction and Budget,2018 (3):37-40.
    [18] 周丹, 余健, 唐浩, 等. CoFe2O4/TiO2/鳞片石墨粒子电极光电催化降解罗丹明B[J]. 环境工程学报,2016,10(10):5503-5510

    ZHOU Dan, YU Jian, TANG Hao, et al. Photoelectrocatalytic degradation of rhodamine B by CoFe2O4/TiO2/flake graphite particle electrode[J]. Chinese Journal of Environmental Engineering,2016,10 (10):5503-5510.
    [19] 刘亚子, 孙成, 洪军. TiO2光电催化技术降解有机污染物研究进展[J]. 环境科学与技术,2006,29(4):109-111, 121

    LIU Yazi, SUN Cheng, HONG Jun. Progress on degrading organic pollutants by TiO2 photo-electrocatalytic technology[J]. Environmental Science & Technology,2006,29 (4):109-111, 121.
    [20] 陈瑞榕, 陈毅挺, 林鑫涛, 等. 基于FTO导电玻璃的碱性品红脱色研究[J]. 分析测试技术与仪器,2019,25(3):148-151

    CHEN Ruirong, CHEN Yiting, LIN Xintao, et al. Study on alkaline magenta decolorization based on FTO conductive glass[J]. Analysis and Testing Technology and Instruments,2019,25 (3):148-151.
    [21] Ayan E, Baylan N, Çehreli S. Removal of propionic acid from aqueous solutions by tributyl phosphate in a room‐temperature ionic liquid using Box-Behnken design[J]. Journal of Industrial and Engineering Chemistry,2023,119 :499-505. doi: 10.1016/j.jiec.2022.11.073
    [22] Zhang P L, Cao J G, Yang Z Z, et al. Adsorption of Sr(II) in aqueous solution by multilayer titanium carbon nitrogen (Ti3CNTx) MXene: box-Behnken modeling design and experimental study[J]. Journal of Environmental Chemical Engineering,2022,10 (6):109019. doi: 10.1016/j.jece.2022.109019
    [23] 林建原, 季丽红. 响应面优化银杏叶中黄酮的提取工艺[J]. 中国食品学报,2013,13(2):83-90

    LIN Jianyuan, JI Lihong. Optimization of flavonoids from ginkgo biloba using respone surface analysis[J]. Journal of Chinese Institute of Food Science and Technology,2013,13 (2):83-90.
    [24] 林晓森, 薛祥航, 董慧敏, 等. 响应面优化微波辅助Fenton法降解活性艳蓝KN-R[J]. 分析测试技术与仪器,2022,28(2):144-152

    LIN Xiaosen, XUE Xianghang, DONG Huimin, et al. Degradation of remazol brilliant blue KN-R by microwave-assisted Fenton method based on response surface optimization[J]. Analysis and Testing Technology and Instruments,2022,28 (2):144-152.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  18
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 录用日期:  2023-05-16
  • 修回日期:  2023-05-16
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回