Study on Photoelectric Decolorization of Auramine O
-
摘要: 以掺杂氟的SnO2透明导电玻璃(FTO导电玻璃)为阳极,通过单因素和响应面法优化了碱性嫩黄O的光电降解工艺. 探讨了TiO2、NaCl质量浓度、环境酸度、降解电压与施加时间等因素对脱色率的影响,并利用响应面法优化了脱色条件. 结果表明:在TiO2质量浓度为0.13 g/L、NaCl质量浓度为0.43 g/L、环境初始酸度为8.0,施加14.0 V的降解电压30 min后,碱性嫩黄O脱色率可达95.91%.Abstract: The photoelectric degradation of Aauramine O was optimized by the single factor and response surface method using a fluorine-doped SnO2 transparent conductive glass (FTO conductive glass) as the anode. The effects of mass concentration of TiO2 and NaCl, acidity of environment, voltage of electrolysis and time applied on the decolorization rate were discussed, and the decolorization conditions were optimized using a response surface method. The results showed that the decolorization rate of Auramine O could reach 95.91% when the mass concentration of TiO2 was 0.13 g/L, the mass concentration of NaCl was 0.43 g/L, the initial acidity of the environment was 8.0, and the voltage of electrolysis was 14.0 V for 30 min.
-
Key words:
- photoelectric decolorization /
- Auramine O /
- FTO
-
表 1 Box-Benhnken 试验设计因素和水平
Table 1. Factors and levels of Box-Benhnken experiment design
编码水平 X1/(g/L) X2/(g/L) X3/V −1 0.05 0.2 9 0 0.10 0.5 12 1 0.15 0.8 15 表 2 响应面分析方案及试验结果
Table 2. Design and results of response surface analysis
序号 [TiO2]/(g/L) [NaCl]/(g/L) E/V R/% 1 0.10 0.5 12 92.15 2 0.05 0.2 12 65.62 3 0.15 0.8 12 88.81 4 0.10 0.5 12 85.98 5 0.10 0.5 12 95.86 6 0.10 0.2 9 68.87 7 0.10 0.8 15 90.69 8 0.05 0.8 12 83.16 9 0.10 0.2 15 92.02 10 0.15 0.5 15 93.26 11 0.05 0.5 9 61.02 12 0.10 0.8 9 83.12 13 0.05 0.5 15 83.55 14 0.10 0.5 12 90.42 15 0.10 0.5 12 93.67 16 0.15 0.2 12 90.69 17 0.15 0.5 9 89.88 表 3 响应面二次回归模型的方差分析
Table 3. Analysis of variance for response surface quadratic regression equation
来源 自由度 平方和 均方 F值 P值 模型 9 1 646.90 1 646.90 19.05 0.000 4** [TiO2] 1 600.14 600.14 62.47 <0.000 1** [NaCl] 1 102.10 102.10 10.63 0.013 9* E 1 400.87 400.87 41.37 0.000 3** [TiO2]×[NaCl] 1 94.28 94.28 9.81 0.016 5* [TiO2]×E 1 91.68 91.68 9.54 0.017 6* [NaCl]×E 1 60.68 60.68 6.32 0.040 2* [TiO2]2 1 134.26 134.26 13.98 0.007 3** [NaCl]2 1 64.02 64.02 6.66 0.036 4* E2 1 68.78 68.78 7.16 0.031 7* 残差 7 67.24 9.61 失拟项 4 11.53 3.84 0.28 0.840 7 纯误差 4 55.71 13.93 总和 16 1 714.15 注:*表示在0.05水平上显著,**表示在0.01水平上极显著 -
[1] Li W D, Qiu J P, Baharinikoo L, et al. Dispersive solid phase microextraction based on magnesium oxide nano-particles for preconcentration of auramine O and methylene blue from water samples[J]. Scientific Reports,2022,12 :12806. doi: 10.1038/s41598-022-16948-z [2] 吴秋华. 新生态二氧化锰处理染料废水[J]. 化学教学,2004(1):7-9. [3] 游婷婷. 插钛膨胀石墨的制备及其应用研究[D]. 河北: 河北大学, 2010YONG Tingting. Preparation and application of expanded graphite loaded with Titania[D]. Hebei: Hebei University, 2010. [4] Jain B, Hashmi A, Sanwaria S, et al. Catalytic properties of graphene oxide synthesized by a “green” process for efficient abatement of auramine-O cationic dye[J]. Analytical Chemistry Letters,2020,10 (1):21-32. doi: 10.1080/22297928.2020.1747536 [5] 白波, 田维锋, 薛小强, 等. Fe3+@酵母菌非均相UV-Fenton降解染料废水[J]. 化学工程,2010,38(8):64-68BAI Bo, TIAN Weifeng, XUE Xiaoqiang, et al. Heterogeneous UV-Fenton degradation of dye effluents by using Fe3+@yeasts[J]. Chemical Engineering (China),2010,38 (8):64-68. [6] Gupta A, Khosla N, Govindasamy V, et al. Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water[J]. Applied Nanoscience,2020,10 (11):4191-4205. doi: 10.1007/s13204-020-01540-6 [7] 孙旋, 刘红, 倪昕. Fe2O3-TiO2光催化剂的制备及其对碱性嫩黄的降解[J]. 水处理技术,2008,34(4):61-64SUN Xuan, LIU Hong, NI Xin. Preparation of Fe2O3-TiO2 nano-particle composite photocatalyst and degradation of auramine[J]. Technology of Water Treatment,2008,34 (4):61-64. [8] 李定颐. 单颗粒SERS基底用于污染物的灵敏检测和光催化降解过程原位监测[D]. 湖北: 华中科技大学, 2018LI Dingyi. Single-particle SERS substrate: application in detection and in situ SERS monitioring photocatalytic degradation process of pollutants[D]. Hubei: Huazhong University of Science and Technology, 2018. [9] 王元芳, 尹孟华, 钱佳丽, 等. 混凝与光催化联用处理水体中的复合染料[J]. 化工进展,2020,39(12):5290-5298WANG Yuanfang, YIN Menghua, QIAN Jiali, et al. Color removal of composite dye by coagulation-photocatalysis[J]. Chemical Industry and Engineering Progress,2020,39 (12):5290-5298. [10] Sun H S, Qin J, Yi L D, et al. A new process for degradation of auramine O dye and heat generation based on orifice plate hydrodynamic cavitation (HC): parameter optimization and performance analyses[J]. Process Safety and Environmental Protection,2022,161 :669-683. doi: 10.1016/j.psep.2022.03.058 [11] Orimolade B O, Idris A O, Akanji S P, et al. Solar-light-responsive nanomaterials for the photoelectrocatalytic degradation of stubborn pollutants[J]. Coatings,2023,13 (1):159. doi: 10.3390/coatings13010159 [12] 秦丽, 尤晓亭, 唐录华, 等. 基于纳米材料修饰的碱性嫩黄O印迹传感器的制备及其应用[J]. 应用化学,2022,39(12):1880-1890QIN Li, YOU Xiaoting, TANG Luhua, et al. Preparation and application of auramine O imprinted sensor based on nanomaterials modification[J]. Chinese Journal of Applied Chemistry,2022,39 (12):1880-1890. [13] 王晓钰. 纳米TiO2光催化氧化法处理碱性紫5BN染料废水的研究[J]. 新乡师范高等专科学校学报,2006,20(2):27-30WANG Xiaoyu. A study of treating methyl violet 5BN waste water by nano titanium dioxide photocatalytic oxidation process[J]. Journal of Xinxiang Teachers College,2006,20 (2):27-30. [14] 方建章, 蒲玉英, 廖锦云, 等. 电化学生成H2O2-TiO2/UV降解碱性品红研究[J]. 华南师范大学学报(自然科学版),2006,38(3):74-80FANG Jianzhang, PU Yuying, LIAO Jinyun, et al. Degradation of basic violet by electrogenerated H2O2-TiO2/UV[J]. Journal of South China Normal University (Natural Science Edition),2006,38 (3):74-80. [15] 杨利敬. 电化学氧化法与纳米Fe3O4催化H2O2降解橙G的研究[D]. 河南: 河南师范大学, 2015YANG Lijing. Study on degradation of orange G by two methods: electrochemical oxidation process and nano Fe3O4 catalytic hydrogen peroxide oxidation process[D]. Henan: Henan Normal University, 2015. [16] 李树权, 陈维洪, 黄雪萍, 等. 活性炭-纳米二氧化钛光电催化中性红的基础研究[J]. 广东化工,2015,42(1):34-36LI Shuquan, CHEN Weihong, HUANG Xueping, et al. Study on photoelectrocatalytic degradation of toluylene red[J]. Guangdong Chemical Industry,2015,42 (1):34-36. [17] 李亚峰, 于佳辉. UV/负载型TiO2光催化剂降解染料废水的试验研究[J]. 建筑与预算,2018(3):37-40LI Yafeng, YU Jiahui. Experimental study on degradation of dye wastewater by UV/supported TiO2 photocatalyst[J]. Construction and Budget,2018 (3):37-40. [18] 周丹, 余健, 唐浩, 等. CoFe2O4/TiO2/鳞片石墨粒子电极光电催化降解罗丹明B[J]. 环境工程学报,2016,10(10):5503-5510ZHOU Dan, YU Jian, TANG Hao, et al. Photoelectrocatalytic degradation of rhodamine B by CoFe2O4/TiO2/flake graphite particle electrode[J]. Chinese Journal of Environmental Engineering,2016,10 (10):5503-5510. [19] 刘亚子, 孙成, 洪军. TiO2光电催化技术降解有机污染物研究进展[J]. 环境科学与技术,2006,29(4):109-111, 121LIU Yazi, SUN Cheng, HONG Jun. Progress on degrading organic pollutants by TiO2 photo-electrocatalytic technology[J]. Environmental Science & Technology,2006,29 (4):109-111, 121. [20] 陈瑞榕, 陈毅挺, 林鑫涛, 等. 基于FTO导电玻璃的碱性品红脱色研究[J]. 分析测试技术与仪器,2019,25(3):148-151CHEN Ruirong, CHEN Yiting, LIN Xintao, et al. Study on alkaline magenta decolorization based on FTO conductive glass[J]. Analysis and Testing Technology and Instruments,2019,25 (3):148-151. [21] Ayan E, Baylan N, Çehreli S. Removal of propionic acid from aqueous solutions by tributyl phosphate in a room‐temperature ionic liquid using Box-Behnken design[J]. Journal of Industrial and Engineering Chemistry,2023,119 :499-505. doi: 10.1016/j.jiec.2022.11.073 [22] Zhang P L, Cao J G, Yang Z Z, et al. Adsorption of Sr(II) in aqueous solution by multilayer titanium carbon nitrogen (Ti3CNTx) MXene: box-Behnken modeling design and experimental study[J]. Journal of Environmental Chemical Engineering,2022,10 (6):109019. doi: 10.1016/j.jece.2022.109019 [23] 林建原, 季丽红. 响应面优化银杏叶中黄酮的提取工艺[J]. 中国食品学报,2013,13(2):83-90LIN Jianyuan, JI Lihong. Optimization of flavonoids from ginkgo biloba using respone surface analysis[J]. Journal of Chinese Institute of Food Science and Technology,2013,13 (2):83-90. [24] 林晓森, 薛祥航, 董慧敏, 等. 响应面优化微波辅助Fenton法降解活性艳蓝KN-R[J]. 分析测试技术与仪器,2022,28(2):144-152LIN Xiaosen, XUE Xianghang, DONG Huimin, et al. Degradation of remazol brilliant blue KN-R by microwave-assisted Fenton method based on response surface optimization[J]. Analysis and Testing Technology and Instruments,2022,28 (2):144-152. -