[1] |
Browner R F, Boorn A W. Sample introduction techniques for atomic spectroscopy[J]. Analytical Chemistry,1984,56 (7):875A-888A. doi: 10.1021/ac00271a799
|
[2] |
侯贤灯. 化学蒸气发生-原子光/质谱分析新进展[C]//第十届中国化学会分析化学年会暨第十届全国原子光谱学术会议论文摘要集. 科学出版社, 2009: 48.
|
[3] |
He Y H, Hou X D, Zheng C B, et al. Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):769-774. doi: 10.1007/s00216-006-1044-7
|
[4] |
Wu P, He L, Zheng C B, et al. Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2010,25 (8):1217-1246. doi: 10.1039/c003483e
|
[5] |
Yin Y G, Liu J F, Jiang G B. Photo-induced chemical-vapor generation for sample introduction in atomic spectrometry[J]. TrAC Trends in Analytical Chemistry,2011,30 (10):1672-1684. doi: 10.1016/j.trac.2011.04.021
|
[6] |
邢志, 李铭. 化学蒸气发生-非色散原子荧光光谱技术的发展[J]. 分析仪器,2017(6):1-15 doi: 10.3969/j.issn.1001-232x.2017.06.001XING Zhi, LI Ming. Development of chemical vapor generation-nondispersive atomic fluorescence spectrometric technology[J]. Analytical Instrumentation,2017 (6):1-15. doi: 10.3969/j.issn.1001-232x.2017.06.001
|
[7] |
Poyatos J M, Muñio M M, Almecija M C, et al. Advanced oxidation processes for wastewater treatment: state of the art[J]. Water, Air, and Soil Pollution,2010,205 (1):187-204.
|
[8] |
Tan T, Beydoun D, Amal R. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions[J]. Journal of Photochemistry and Photobiology A: Chemistry,2003,159 (3):273-280. doi: 10.1016/S1010-6030(03)00171-0
|
[9] |
Tong M, Yuan S H, Zhang P, et al. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater[J]. Environmental Science & Technology,2014,48 (9):5145-5153.
|
[10] |
Bendicho C, Pena F, Costas M, et al. Photochemistry-based sample treatments as greener approaches for trace-element analysis and speciation[J]. TrAC Trends in Analytical Chemistry,2010,29 (7):681-691. doi: 10.1016/j.trac.2010.05.003
|
[11] |
Guo X M, Sturgeon R E, Mester Z, et al. Vapor generation by UV irradiation for sample introduction with atomic spectrometry[J]. Analytical Chemistry,2004,76 (8):2401-2405. doi: 10.1021/ac0353536
|
[12] |
Guo X M, Sturgeon R E, Mester Z, et al. Photochemical alkylation of inorganic arsenic Part 1. Identification of volatile arsenic species[J]. Journal of Analytical Atomic Spectrometry,2005,20 (8):702-708. doi: 10.1039/b503661e
|
[13] |
Guo X M, Sturgeon R E, Mester Z, et al. UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry[J]. Analytical Chemistry,2003,75 (9):2092-2099. doi: 10.1021/ac020695h
|
[14] |
McSheehy S, Guo X M, Sturgeon R E, et al. Photochemical alkylation of inorganic arsenic: Part 2. Identification of aqueous phase organoarsenic species using multidimensional liquid chromatography and electrospray mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2005,20 (8):709. doi: 10.1039/b503662c
|
[15] |
Figueroa R, García M, Lavilla I, et al. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60 (12):1556-1563. doi: 10.1016/j.sab.2005.10.009
|
[16] |
Li Y, Zheng C B, Ma Q, et al. Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples[J]. Journal of Analytical Atomic Spectrometry,2006,21 (1):82-85. doi: 10.1039/B512198A
|
[17] |
Yin Y M, Qiu J H, Yang L M, et al. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):831-836. doi: 10.1007/s00216-007-1122-5
|
[18] |
Han C F, Zheng C B, Wang J, et al. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):825-830. doi: 10.1007/s00216-006-1006-0
|
[19] |
Sturgeon R E, Grinberg P. Some speculations on the mechanisms of photochemical vapor generation[J]. Journal of Analytical Atomic Spectrometry,2012,27 (2):222-231. doi: 10.1039/C2JA10249H
|
[20] |
Guo X M, Sturgeon R E, Mester Z, et al. UV photosynthesis of nickel carbonyl[J]. Applied Organometallic Chemistry,2004,18 (5):205-211. doi: 10.1002/aoc.602
|
[21] |
Grinberg P, Mester Z, Sturgeon R E, et al. Generation of volatile cobalt species by UV photoreduction and their tentative identification[J]. Journal of Analytical Atomic Spectrometry,2008,23 (4):583-587. doi: 10.1039/b717216h
|
[22] |
Liu L W, Deng H, Wu L, et al. UV-induced carbonyl generation with formic acid for sensitive determination of nickel by atomic fluorescence spectrometry[J]. Talanta,2010,80 (3):1239-1244. doi: 10.1016/j.talanta.2009.09.016
|
[23] |
Grinberg P, Sturgeon R E, Gardner G. Identification of volatile iron species generated by UV photolysis[J]. Microchemical Journal,2012,105 :44-47. doi: 10.1016/j.microc.2012.05.036
|
[24] |
Grinberg P, Mester Z, D'Ulivo A, et al. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2009,64 (7):714-716. doi: 10.1016/j.sab.2009.06.009
|
[25] |
Sturgeon R E. Detection of bromine by ICP-oa-ToF-MS following photochemical vapor generation[J]. Analytical Chemistry,2015,87 (5):3072-3079. doi: 10.1021/ac504747a
|
[26] |
Zou Z R, Jiang X Y, Li L L, et al. Photochemical vapor generation of selenium: mechanisms and applications[J]. Trends in Environmental Analytical Chemistry,2020,27 :94.
|
[27] |
Sturgeon R E. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2017,32 (12):2319-2340. doi: 10.1039/C7JA00285H
|
[28] |
Zheng C B, Sturgeon R E, Brophy C, et al. Versatile thin-film reactor for photochemical vapor generation[J]. Analytical Chemistry,2010,82 (7):3086-3093. doi: 10.1021/ac100229k
|
[29] |
Liu J X, Qin D Q, Zhao L Q, et al. Ultraviolet pretreatment device: EP20100861194[P]. 2023-07-25.
|
[30] |
Li M T, Luo Y, Zou Z R, et al. A miniaturized UV-LED array chip-based photochemical vapor generator coupled with a point discharge optical emission spectrometer for the determination of trace selenium[J]. Journal of Analytical Atomic Spectrometry,2021,36 (12):2735-2743. doi: 10.1039/D1JA00290B
|
[31] |
Yang W L, Gao Y, Wu L, et al. Preconcentration and in situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry[J]. Microchimica Acta,2014,181 (1):197-204.
|
[32] |
Chen C C, Wang C C, Yeh J T. Improvement of odor elimination and anti-bacterial activity of polyester fabrics finished with composite emulsions of nanometer titanium dioxide-silver particles-water-borne polyurethane[J]. Textile Research Journal,2010,80 (4):291-300. doi: 10.1177/0040517508100626
|
[33] |
Li H M, Luo Y C, Li Z X, et al. Nanosemiconductor-based photocatalytic vapor generation systems for subsequent selenium determination and speciation with atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry[J]. Analytical Chemistry,2012,84 (6):2974-2981. doi: 10.1021/ac3001995
|
[34] |
Li H M, Xu Z G, Yang L M, et al. Determination and speciation of Hg using HPLC-AFS by atomization of this metal on a UV/nano-ZrO2/HCOOH photocatalytic reduction unit[J]. Journal of Analytical Atomic Spectrometry,2015,30 (4):916-921. doi: 10.1039/C4JA00455H
|
[35] |
Jia J, Long Z, Zheng C B, et al. Metal organic frameworks CAU-1 as new photocatalyst for photochemical vapour generation for analytical atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2015,30 (2):339-342. doi: 10.1039/C4JA00360H
|
[36] |
Luo J, Xu F J, Tu J P, et al. Amine-functionalized titanium metal organic framework for photochemical vapor generation for determination of selenium by inductively coupled plasma optical emission spectrometry[J]. Microchemical Journal,2017,132 :245-250. doi: 10.1016/j.microc.2017.02.005
|
[37] |
Liu Y C, Zou J, Luo B, et al. Ivy extract-assisted photochemical vapor generation for sensitive determination of mercury by atomic fluorescence spectrometry[J]. Microchemical Journal,2021,169 :106547. doi: 10.1016/j.microc.2021.106547
|
[38] |
Zou Z R, Hu J, Xu F J, et al. Nanomaterials for photochemical vapor generation-analytical atomic spectrometry[J]. TrAC Trends in Analytical Chemistry,2019,114 :242-250. doi: 10.1016/j.trac.2019.03.012
|
[39] |
Zheng C, Yang L, Sturgeon R E, et al. UV photochemical vapor generation sample introduction for determination of Ni, Fe, and Se in biological tissue by isotope dilution ICPMS[J], Analytical Chemistry, 2010, 82(9): 3899-3904.
|
[40] |
Oliveira RM, Borges D L G, Grinberg P, et al. Copper-ion assisted photochemical vapor generation of bromide and bromate[J]. Journal of Analytical Atomic Spectrometry,2021,36 (6):1235-1243. doi: 10.1039/D1JA00094B
|
[41] |
Gao Y, Xu M, Sturgeon R E, et al. Metal ion-assisted photochemical vapor generation for the determination of lead in environmental samples by multicollector-ICPMS[J]. Analytical Chemistry,2015,87 (8):4495-4502. doi: 10.1021/acs.analchem.5b00533
|
[42] |
Wang Y L, Lin L L, Liu J X, et al. Ferric ion induced enhancement of ultraviolet vapour generation coupled with atomic fluorescence spectrometry for the determination of ultratrace inorganic arsenic in surface water[J]. Analyst,2016,141 (4):1530-1536. doi: 10.1039/C5AN02489G
|
[43] |
张若曦. 废水中汞的化学蒸气发生捕集方法研究[D]. 成都: 成都理工大学, 2011ZHANG Ruoxi. Study on chemical vapor generation and capture method of mercury in water[D]. Chengdu: Chengdu University of Technology, 2011.
|
[44] |
林玲玲. 无机砷形态和无机铅的紫外蒸汽发生原子荧光光谱分析方法研究[D]. 沈阳: 东北大学, 2014LIN Lingling. Investigations on the ultraviolet vapor generation atomic fluorescence spectrometric determination of species of inorganic arsenicand inorganic lead[M]. Shenyang: Northeast University, 2014.
|
[45] |
何虹燕. 碲和砷的新型光化学还原及其分析应用[D]. 成都: 成都理工大学, 2018HE Hongyan. Novel UV-photochemical reduction of Te and As and its analytical application [D]. Chengdu: Chengdu University of Technology, 2018.
|
[46] |
Büyükpınar Ç, Bodur S, Yazıcı E, et al. An accurate analytical method for the determination of cadmium: ultraviolet based photochemical vapor generation-slotted quartz tube based atom trap-flame atomic absorption spectrophotometry[J]. Measurement,2021,176 :109192. doi: 10.1016/j.measurement.2021.109192
|
[47] |
Büyükpınar Ç, San N, Komesli O T, et al. Combination of an efficient photochemical vapor generation system and flame atomic absorption spectrophotometry for trace nickel determination in wastewater samples[J]. Analytical Letters,2021,54 (9):1457-1469. doi: 10.1080/00032719.2020.1805749
|
[48] |
李媛. 样品基体辅助光诱导化学蒸气发生原子荧光法测定酒中的痕量汞[D]. 成都: 四川大学, 2006LI Yuan. Determination of trace mercury in wine by sample matrix assisted photoinduced chemical vapor generation atomic fluorescence spectrometry[D]. Chengdu: Sichuan University, 2006.
|
[49] |
Vieira M A, Ribeiro A S, Curtius A J, et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):837-847. doi: 10.1007/s00216-007-1194-2
|
[50] |
叶隆慧. 紫外光化学蒸气发生与原子荧光/质谱联用分析汞、硒形态[D]. 成都: 成都理工大学, 2011YE Longhui. Speciation analysis of mercury and selenium by ultraviolet chemical vapor generation and atomic fluorescence/mass spectrometry[D]. Chengdu: Chengdu University of Technology, 2011.
|
[51] |
da Luz Potes M, Venâncio Nakadi F, Grasel Frois C F, et al. Investigation of the conditions for selenium determination by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry[J]. Microchemical Journal,2019,147 :324-332. doi: 10.1016/j.microc.2019.03.053
|
[52] |
Melis Ç. Studies on photochemical vapor generation of selenium[M]. Middle East Technical University, 2019.
|
[53] |
Hu J, Chen H J, Hou X D, et al. Cobalt and copper ions synergistically enhanced photochemical vapor generation of molybdenum: mechanism study and analysis of water samples[J]. Analytical Chemistry,2019,91 (9):5938-5944. doi: 10.1021/acs.analchem.9b00337
|
[54] |
Nováková E, Horová K, Červený V, et al. UV photochemical vapor generation of Cd from a formic acid based medium: optimization, efficiency and interferences[J]. Journal of Analytical Atomic Spectrometry,2020,35 (7):1380-1388. doi: 10.1039/D0JA00086H
|
[55] |
Mollo A, Knochen M. Towards the abatement of nitrate interference on selenium determination by photochemical vapor generation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2020,169 :105875. doi: 10.1016/j.sab.2020.105875
|