扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外光化学蒸气发生技术综述

郭炜 刘美彤 张卫宏 葛迎吉 康宁 刘子杰

郭炜, 刘美彤, 张卫宏, 葛迎吉, 康宁, 刘子杰. 紫外光化学蒸气发生技术综述[J]. 分析测试技术与仪器, 2023, 29(3): 272-279. doi: 10.16495/j.1006-3757.2023.03.004
引用本文: 郭炜, 刘美彤, 张卫宏, 葛迎吉, 康宁, 刘子杰. 紫外光化学蒸气发生技术综述[J]. 分析测试技术与仪器, 2023, 29(3): 272-279. doi: 10.16495/j.1006-3757.2023.03.004
GUO Wei, LIU Meitong, ZHANG Weihong, GE Yingji, KANG Ning, LIU Zijie. Review of Ultraviolet Photo-Chemical Vapor Generation Technology[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 272-279. doi: 10.16495/j.1006-3757.2023.03.004
Citation: GUO Wei, LIU Meitong, ZHANG Weihong, GE Yingji, KANG Ning, LIU Zijie. Review of Ultraviolet Photo-Chemical Vapor Generation Technology[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 272-279. doi: 10.16495/j.1006-3757.2023.03.004

紫外光化学蒸气发生技术综述

doi: 10.16495/j.1006-3757.2023.03.004
详细信息
    作者简介:

    郭炜(1969−),男,高级工程师,研究方向:环境在线监测仪器制造,E-mail:guowei7@cecep.cn

    通讯作者:

    张卫宏(1984−),男,硕士,高级工程师,研究方向:水环境检测,E-mail:zhangweihong@cecep.cn

  • 中图分类号: O656. 23

Review of Ultraviolet Photo-Chemical Vapor Generation Technology

  • 摘要: 紫外光化学蒸气发生(UV-PVG)是一种绿色的样品引入技术,作为接口已被成功应用于结合光谱与质谱检测领域,实现对目标元素的检测. 方法简单高效,试剂用量少,可用于现场式检测. 同时,UV-PVG也拓宽了化学蒸汽发生元素范围,不仅可应用于As、Hg、Sb、Pb等可氢化物发生元素,还可以应用于过渡金属元素包括Cd、Fe、Co、Ni、Os以及非金属元素中的I、Br. 从机理推测、应用范围、优缺点和发展趋势方面对UV-PVG进行了阐述.
  • 图  1  UV-PVG特点与应用[10]

    Figure  1.  Characteristics and applications of UV-PVG[10]

    图  2  UV-PVG装置[5]

    (a)流动式,(b)水浴式

    Figure  2.  Device of UV-PVG (GLS, gas-liquid separator; LMWOC, low-molecular-weight organic compound) [5]

    (a) flow through mode, (b) batch mode

    图  3  灯内UV-PVG装置[29]

    (1)石英管,(2)汞灯管壁,(3)电极

    Figure  3.  Device of UV-PVG in lamp[29]

    图  4  UV-LED阵列芯片作辐照源的UV-PVG装置[30]

    Figure  4.  UV-PVG device with UV-LED array chip as irradiation source [30]

  • [1] Browner R F, Boorn A W. Sample introduction techniques for atomic spectroscopy[J]. Analytical Chemistry,1984,56 (7):875A-888A. doi: 10.1021/ac00271a799
    [2] 侯贤灯. 化学蒸气发生-原子光/质谱分析新进展[C]//第十届中国化学会分析化学年会暨第十届全国原子光谱学术会议论文摘要集. 科学出版社, 2009: 48.
    [3] He Y H, Hou X D, Zheng C B, et al. Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):769-774. doi: 10.1007/s00216-006-1044-7
    [4] Wu P, He L, Zheng C B, et al. Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2010,25 (8):1217-1246. doi: 10.1039/c003483e
    [5] Yin Y G, Liu J F, Jiang G B. Photo-induced chemical-vapor generation for sample introduction in atomic spectrometry[J]. TrAC Trends in Analytical Chemistry,2011,30 (10):1672-1684. doi: 10.1016/j.trac.2011.04.021
    [6] 邢志, 李铭. 化学蒸气发生-非色散原子荧光光谱技术的发展[J]. 分析仪器,2017(6):1-15 doi: 10.3969/j.issn.1001-232x.2017.06.001

    XING Zhi, LI Ming. Development of chemical vapor generation-nondispersive atomic fluorescence spectrometric technology[J]. Analytical Instrumentation,2017 (6):1-15. doi: 10.3969/j.issn.1001-232x.2017.06.001
    [7] Poyatos J M, Muñio M M, Almecija M C, et al. Advanced oxidation processes for wastewater treatment: state of the art[J]. Water, Air, and Soil Pollution,2010,205 (1):187-204.
    [8] Tan T, Beydoun D, Amal R. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions[J]. Journal of Photochemistry and Photobiology A: Chemistry,2003,159 (3):273-280. doi: 10.1016/S1010-6030(03)00171-0
    [9] Tong M, Yuan S H, Zhang P, et al. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater[J]. Environmental Science & Technology,2014,48 (9):5145-5153.
    [10] Bendicho C, Pena F, Costas M, et al. Photochemistry-based sample treatments as greener approaches for trace-element analysis and speciation[J]. TrAC Trends in Analytical Chemistry,2010,29 (7):681-691. doi: 10.1016/j.trac.2010.05.003
    [11] Guo X M, Sturgeon R E, Mester Z, et al. Vapor generation by UV irradiation for sample introduction with atomic spectrometry[J]. Analytical Chemistry,2004,76 (8):2401-2405. doi: 10.1021/ac0353536
    [12] Guo X M, Sturgeon R E, Mester Z, et al. Photochemical alkylation of inorganic arsenic Part 1. Identification of volatile arsenic species[J]. Journal of Analytical Atomic Spectrometry,2005,20 (8):702-708. doi: 10.1039/b503661e
    [13] Guo X M, Sturgeon R E, Mester Z, et al. UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry[J]. Analytical Chemistry,2003,75 (9):2092-2099. doi: 10.1021/ac020695h
    [14] McSheehy S, Guo X M, Sturgeon R E, et al. Photochemical alkylation of inorganic arsenic: Part 2. Identification of aqueous phase organoarsenic species using multidimensional liquid chromatography and electrospray mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2005,20 (8):709. doi: 10.1039/b503662c
    [15] Figueroa R, García M, Lavilla I, et al. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60 (12):1556-1563. doi: 10.1016/j.sab.2005.10.009
    [16] Li Y, Zheng C B, Ma Q, et al. Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples[J]. Journal of Analytical Atomic Spectrometry,2006,21 (1):82-85. doi: 10.1039/B512198A
    [17] Yin Y M, Qiu J H, Yang L M, et al. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):831-836. doi: 10.1007/s00216-007-1122-5
    [18] Han C F, Zheng C B, Wang J, et al. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):825-830. doi: 10.1007/s00216-006-1006-0
    [19] Sturgeon R E, Grinberg P. Some speculations on the mechanisms of photochemical vapor generation[J]. Journal of Analytical Atomic Spectrometry,2012,27 (2):222-231. doi: 10.1039/C2JA10249H
    [20] Guo X M, Sturgeon R E, Mester Z, et al. UV photosynthesis of nickel carbonyl[J]. Applied Organometallic Chemistry,2004,18 (5):205-211. doi: 10.1002/aoc.602
    [21] Grinberg P, Mester Z, Sturgeon R E, et al. Generation of volatile cobalt species by UV photoreduction and their tentative identification[J]. Journal of Analytical Atomic Spectrometry,2008,23 (4):583-587. doi: 10.1039/b717216h
    [22] Liu L W, Deng H, Wu L, et al. UV-induced carbonyl generation with formic acid for sensitive determination of nickel by atomic fluorescence spectrometry[J]. Talanta,2010,80 (3):1239-1244. doi: 10.1016/j.talanta.2009.09.016
    [23] Grinberg P, Sturgeon R E, Gardner G. Identification of volatile iron species generated by UV photolysis[J]. Microchemical Journal,2012,105 :44-47. doi: 10.1016/j.microc.2012.05.036
    [24] Grinberg P, Mester Z, D'Ulivo A, et al. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2009,64 (7):714-716. doi: 10.1016/j.sab.2009.06.009
    [25] Sturgeon R E. Detection of bromine by ICP-oa-ToF-MS following photochemical vapor generation[J]. Analytical Chemistry,2015,87 (5):3072-3079. doi: 10.1021/ac504747a
    [26] Zou Z R, Jiang X Y, Li L L, et al. Photochemical vapor generation of selenium: mechanisms and applications[J]. Trends in Environmental Analytical Chemistry,2020,27 :94.
    [27] Sturgeon R E. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2017,32 (12):2319-2340. doi: 10.1039/C7JA00285H
    [28] Zheng C B, Sturgeon R E, Brophy C, et al. Versatile thin-film reactor for photochemical vapor generation[J]. Analytical Chemistry,2010,82 (7):3086-3093. doi: 10.1021/ac100229k
    [29] Liu J X, Qin D Q, Zhao L Q, et al. Ultraviolet pretreatment device: EP20100861194[P]. 2023-07-25.
    [30] Li M T, Luo Y, Zou Z R, et al. A miniaturized UV-LED array chip-based photochemical vapor generator coupled with a point discharge optical emission spectrometer for the determination of trace selenium[J]. Journal of Analytical Atomic Spectrometry,2021,36 (12):2735-2743. doi: 10.1039/D1JA00290B
    [31] Yang W L, Gao Y, Wu L, et al. Preconcentration and in situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry[J]. Microchimica Acta,2014,181 (1):197-204.
    [32] Chen C C, Wang C C, Yeh J T. Improvement of odor elimination and anti-bacterial activity of polyester fabrics finished with composite emulsions of nanometer titanium dioxide-silver particles-water-borne polyurethane[J]. Textile Research Journal,2010,80 (4):291-300. doi: 10.1177/0040517508100626
    [33] Li H M, Luo Y C, Li Z X, et al. Nanosemiconductor-based photocatalytic vapor generation systems for subsequent selenium determination and speciation with atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry[J]. Analytical Chemistry,2012,84 (6):2974-2981. doi: 10.1021/ac3001995
    [34] Li H M, Xu Z G, Yang L M, et al. Determination and speciation of Hg using HPLC-AFS by atomization of this metal on a UV/nano-ZrO2/HCOOH photocatalytic reduction unit[J]. Journal of Analytical Atomic Spectrometry,2015,30 (4):916-921. doi: 10.1039/C4JA00455H
    [35] Jia J, Long Z, Zheng C B, et al. Metal organic frameworks CAU-1 as new photocatalyst for photochemical vapour generation for analytical atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry,2015,30 (2):339-342. doi: 10.1039/C4JA00360H
    [36] Luo J, Xu F J, Tu J P, et al. Amine-functionalized titanium metal organic framework for photochemical vapor generation for determination of selenium by inductively coupled plasma optical emission spectrometry[J]. Microchemical Journal,2017,132 :245-250. doi: 10.1016/j.microc.2017.02.005
    [37] Liu Y C, Zou J, Luo B, et al. Ivy extract-assisted photochemical vapor generation for sensitive determination of mercury by atomic fluorescence spectrometry[J]. Microchemical Journal,2021,169 :106547. doi: 10.1016/j.microc.2021.106547
    [38] Zou Z R, Hu J, Xu F J, et al. Nanomaterials for photochemical vapor generation-analytical atomic spectrometry[J]. TrAC Trends in Analytical Chemistry,2019,114 :242-250. doi: 10.1016/j.trac.2019.03.012
    [39] Zheng C, Yang L, Sturgeon R E, et al. UV photochemical vapor generation sample introduction for determination of Ni, Fe, and Se in biological tissue by isotope dilution ICPMS[J], Analytical Chemistry, 2010, 82(9): 3899-3904.
    [40] Oliveira RM, Borges D L G, Grinberg P, et al. Copper-ion assisted photochemical vapor generation of bromide and bromate[J]. Journal of Analytical Atomic Spectrometry,2021,36 (6):1235-1243. doi: 10.1039/D1JA00094B
    [41] Gao Y, Xu M, Sturgeon R E, et al. Metal ion-assisted photochemical vapor generation for the determination of lead in environmental samples by multicollector-ICPMS[J]. Analytical Chemistry,2015,87 (8):4495-4502. doi: 10.1021/acs.analchem.5b00533
    [42] Wang Y L, Lin L L, Liu J X, et al. Ferric ion induced enhancement of ultraviolet vapour generation coupled with atomic fluorescence spectrometry for the determination of ultratrace inorganic arsenic in surface water[J]. Analyst,2016,141 (4):1530-1536. doi: 10.1039/C5AN02489G
    [43] 张若曦. 废水中汞的化学蒸气发生捕集方法研究[D]. 成都: 成都理工大学, 2011

    ZHANG Ruoxi. Study on chemical vapor generation and capture method of mercury in water[D]. Chengdu: Chengdu University of Technology, 2011.
    [44] 林玲玲. 无机砷形态和无机铅的紫外蒸汽发生原子荧光光谱分析方法研究[D]. 沈阳: 东北大学, 2014

    LIN Lingling. Investigations on the ultraviolet vapor generation atomic fluorescence spectrometric determination of species of inorganic arsenicand inorganic lead[M]. Shenyang: Northeast University, 2014.
    [45] 何虹燕. 碲和砷的新型光化学还原及其分析应用[D]. 成都: 成都理工大学, 2018

    HE Hongyan. Novel UV-photochemical reduction of Te and As and its analytical application [D]. Chengdu: Chengdu University of Technology, 2018.
    [46] Büyükpınar Ç, Bodur S, Yazıcı E, et al. An accurate analytical method for the determination of cadmium: ultraviolet based photochemical vapor generation-slotted quartz tube based atom trap-flame atomic absorption spectrophotometry[J]. Measurement,2021,176 :109192. doi: 10.1016/j.measurement.2021.109192
    [47] Büyükpınar Ç, San N, Komesli O T, et al. Combination of an efficient photochemical vapor generation system and flame atomic absorption spectrophotometry for trace nickel determination in wastewater samples[J]. Analytical Letters,2021,54 (9):1457-1469. doi: 10.1080/00032719.2020.1805749
    [48] 李媛. 样品基体辅助光诱导化学蒸气发生原子荧光法测定酒中的痕量汞[D]. 成都: 四川大学, 2006

    LI Yuan. Determination of trace mercury in wine by sample matrix assisted photoinduced chemical vapor generation atomic fluorescence spectrometry[D]. Chengdu: Sichuan University, 2006.
    [49] Vieira M A, Ribeiro A S, Curtius A J, et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation[J]. Analytical and Bioanalytical Chemistry,2007,388 (4):837-847. doi: 10.1007/s00216-007-1194-2
    [50] 叶隆慧. 紫外光化学蒸气发生与原子荧光/质谱联用分析汞、硒形态[D]. 成都: 成都理工大学, 2011

    YE Longhui. Speciation analysis of mercury and selenium by ultraviolet chemical vapor generation and atomic fluorescence/mass spectrometry[D]. Chengdu: Chengdu University of Technology, 2011.
    [51] da Luz Potes M, Venâncio Nakadi F, Grasel Frois C F, et al. Investigation of the conditions for selenium determination by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry[J]. Microchemical Journal,2019,147 :324-332. doi: 10.1016/j.microc.2019.03.053
    [52] Melis Ç. Studies on photochemical vapor generation of selenium[M]. Middle East Technical University, 2019.
    [53] Hu J, Chen H J, Hou X D, et al. Cobalt and copper ions synergistically enhanced photochemical vapor generation of molybdenum: mechanism study and analysis of water samples[J]. Analytical Chemistry,2019,91 (9):5938-5944. doi: 10.1021/acs.analchem.9b00337
    [54] Nováková E, Horová K, Červený V, et al. UV photochemical vapor generation of Cd from a formic acid based medium: optimization, efficiency and interferences[J]. Journal of Analytical Atomic Spectrometry,2020,35 (7):1380-1388. doi: 10.1039/D0JA00086H
    [55] Mollo A, Knochen M. Towards the abatement of nitrate interference on selenium determination by photochemical vapor generation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2020,169 :105875. doi: 10.1016/j.sab.2020.105875
  • 加载中
图(4)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-08-08
  • 修回日期:  2023-08-08
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回