Volume 26 Issue 4
Jan.  2021
Turn off MathJax
Article Contents
FENG Hui-min, HOU Yi-zhe, HUANG Tian-ci, LI Yuan-xiang, LI Zheng, LI Wen-long. Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products[J]. Analysis and Testing Technology and Instruments, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003
Citation: FENG Hui-min, HOU Yi-zhe, HUANG Tian-ci, LI Yuan-xiang, LI Zheng, LI Wen-long. Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products[J]. Analysis and Testing Technology and Instruments, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003

Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products

doi: 10.16495/j.1006-3757.2020.04.003
  • Received Date: 2020-11-20
  • Rev Recd Date: 2020-12-17
  • Publish Date: 2020-12-30
  • Electronic sensing technology has been widely used in the field of traditional Chinese medicine and agricultural products in recent years because of its advantages such as easy access to signal, rich information and overall characterization of sample properties.In this paper, the commonly used electronic sensing technologies, such as electronic eye, electronic nose and electronic tongue, are introduced.The application reports of the above mentioned technologies in the fields of natural products, such as traditional Chinese medicine, tobacco, food and beverage, are reviewed.The related multivariate data analysis, multi-source data fusion technology, brand protection technology and future instrument research and development are prospected.The purpose is to provide reference for the application of electronic sensing technology in the field of natural products analysis.
  • loading
  • [1]
    刘瑞新, 陈鹏举, 李学林, 吴子丹, 高晓洁, 陈小菲, 张璐, 王青晓, 李振国.人工智能感官:药学领域的新技术[J].药物分析杂志, 2017, 37(4):559-567. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201704001.htm

    Liu Rui-xin, Chen Peng-ju, Li Xue-lin, Wu Zi-dan, Gao Xiao-jie, Chen Xiao-fei, Zhang Lu, Wang Qing-xiao, Li Zhen-guo. Artificial intelligence senses: new technology in pharmaceutical field[J]. Journal of Pharmaceutical Analysis, 2017, 37(4):559-567. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201704001.htm
    Pasquini C. Near infrared spectroscopy: A mature analytical technique with new perspectives-a review[J]. Analytica Chimica Acta, 2018, 1026:1-29. doi: 10.1016/j.aca.2018.04.032
    Nie P, Zhang J, Feng X, Yu C. Classification of hybrid seeds using near-infrared hyperspectral imagingtechnology combined with deep learning[J]. Sensors & Actuators: B Chemical, 2019, 296:1-12. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113010749.html
    Sun W J, Zhang X, Zhang Z Y, Zhu R H. Data fusion of near-infrared and mid-infrared spectra for identificationof rhubarb[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171:72-79. doi: 10.1016/j.saa.2016.07.039
    Mandrilea L, Barbosa-Pereirab L, Sorensenc K M, Giovannozzi A M, Zeppa G, Engelsen S B, Rossi A M. Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy[J]. Food Chemistry, 2019, 292:47-57. doi: 10.1016/j.foodchem.2019.04.008
    蒋玉英, 葛宏义, 廉飞宇, 张元, 夏善红.基于THz技术的农产品品质无损检测研究[J].光谱学与光谱分析, 2014, 34(8):2047-2052. doi: 10.3964/j.issn.1000-0593(2014)08-2047-06

    Jiang Yu-ying, Ge Hong-yi, Lian Fei-yu, Zhang Yuan, Xia Shan-hong. Study on nondestructive detection of agricultural product quality based on THz technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2047-2052. doi: 10.3964/j.issn.1000-0593(2014)08-2047-06
    Gowen A A, O'Sullivan C, O'Donnell C P. Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control[J]. Trends in Food Science & Technology, 2012, 25:40-46. http://europepmc.org/abstract/AGR/IND44724940
    Özbalci B, Boyaci I H, Topcu A, Kadılar C, Tamer U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks[J]. Food Chemistry, 2013, 136:1444-1452. doi: 10.1016/j.foodchem.2012.09.064
    Strzemski M, Wójciak-Kosior M, Sowa I, Agacka-Mołdoch M, Draczkowski P, Matosiuk D, Kurach L, Kocjan R, Dresler S. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil[J]. Talanta, 2017, 174:633-637. doi: 10.1016/j.talanta.2017.06.070
    Dais P, Hatzakis E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review[J]. Analytica Chimica Acta, 2013, 765:1-27. doi: 10.1016/j.aca.2012.12.003
    Freitas J V B, Filho E G A, Silva L M A, Zocolo G J, Brito E S D, Gramosa N V. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum[J]. Talanta, 2018, 180:329-336. doi: 10.1016/j.talanta.2017.12.053
    Yan B J, Chen T, Xu Z L, Qu H B. Rapid process development of chromatographic process using direct analysis in real time mass spectrometry as a process analytical technology tool[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94:106-110. doi: 10.1016/j.jpba.2014.01.033
    Wang L, Zeng S, Chen T, Qu H B. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91:202-209. doi: 10.1016/j.jpba.2013.12.034
    Hwa H J, Jun P Y, Tae K H, Kyun O S. Identification of new, old and mixed brown rice using freshness and an electronic eye[J]. Korean Journal of Crop Science, 2018, 63(2):98-105.
    张慧慧, 孙灵根, 黄学思, 吴纯洁. "电子眼"在中药炮制中应用构想[C].中华中医药学会四大怀药与地道药材研究论坛暨中药炮制分会第二届第五次学术会议与第三届会员代表大会论文集, 2007, 30-36.

    Zhang Hui-hui, Sun Ling-gen, Huang Xue-si, Wu Chun-jie. The application of "electronic eye" in the processing of traditional Chinese medicine[C]. The Fifth Academic Conference and the Third Member Congress of the Fourth Huaiyao and Authentic Medicinal Materials Research Forum of the Chinese Society of Traditional Chinese Medicine, 2007, 30-36.
    Peris M, Escuder-Gilabert L. A 21st century technique for food control: Electronic noses[J]. Analytica Chimica Acta, 2009, 638:1-15. doi: 10.1016/j.aca.2009.02.009
    Xiong Y, Xiao X, Yang X, Xiong Y, Xiao X H, Yang X Y, Yan D, Zhang C, Zou H Q, Lin H, Peng L, Xiao X, Yan Y H. Quality control of Lonicera japonica stored for different months by electronic nose[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91:68-72. doi: 10.1016/j.jpba.2013.12.016
    Campos I, Bataller R, Armero R, Gandia J M, Soto J, Martínez-Máñez Ramón, Gil-Sánchez L. Monitoring grape ripeness using a voltammetric electronic tongue[J]. Food Research International, 2013, 54:1369-1375. doi: 10.1016/j.foodres.2013.10.011
    Cetó X, Pérez S. Voltammetric electronic tongue for vinegar fingerprinting[J]. Talanta, 2020, 219:1-8. http://www.sciencedirect.com/science/article/pii/S0039914020305440
    Rodrigues N, Marx Í M G, Casal S, Dias Luís G, Veloso Ana C A, Pereira José A, Peres António M. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment[J]. Talanta, 2019, 197:363-373. doi: 10.1016/j.talanta.2019.01.055
    Morais de T C B, D R Rodrigues, Carvalho Polari Souto de U T, Lemos S G. A simple voltammetric electronic tongue for the analysis of coffee adulterations[J]. Food Chemistry, 2019, 273:31-38. doi: 10.1016/j.foodchem.2018.04.136
    Xu M, Wang J, Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics[J]. Food Chemistry, 2019, 289:482-489. doi: 10.1016/j.foodchem.2019.03.080
    Orlandi G, Calvini R, Foca G, Pigani L, Simone G V, Ulrici A. Data fusion of electronic eye and electronic tongue signals to monitor grape ripening[J]. Talanta, 2019, 195:181-189. doi: 10.1016/j.talanta.2018.11.046
    Haddi Z, Mabrouk S, Bougrini M, Tahri K, Sghaier K, Barhoumi H, Bari N E, Maaref A, Jaffrezic-Renault N, Bouchikhi B. E-nose and E-tongue combination for improved recognition of fruit juice samples[J]. Food Chemistry, 2014, 150:246-253. doi: 10.1016/j.foodchem.2013.10.105
    许舜军, 杨柳, 谢培山, 林伟基.中药气味鉴别的研究现状与展[J].中药新药与临床药理, 2011, 22(2):228-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201102031.htm

    Xu Shun-jun, Yang Liu, Xie Pei-shan, Lin Wei-ji. Research status and development of odor identification of traditional Chinese medicine[J]. New Chinese Medicine and Clinical Pharmacology, 2011, 22 (2):228-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201102031.htm
    黎量, 杨诗龙, 胥敏, 钟恋, 汪云伟, 艾莉.基于电子鼻、电子舌技术的山楂气、味鉴别[J].中国实验方剂学杂志, 2015, 21(5):99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201505028.htm

    Li Liang, Yang Shi-long, Xu Min, Zhong Lian, Wang Yun-wei, Ai Li. Gas and taste identification of Hawthorn based on electronic nose and tongue technology[J]. Chinese Journal of Experimental Prescription, 2015, 21(5):99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201505028.htm
    邹慧琴, 刘勇, 陶欧, 林辉, 苏玉贞, 林相龙, 闫永红.电子鼻MOS传感器阵列优化及其在中药材快速鉴别中的应用[J].中国中药杂志, 2013, 38(2):161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302003.htm

    Zou Hui-qin, Liu Yong, Tao ou, Lin Hui, Su Yu-zhen, Lin Xiang-long, Yan Yong-hong. Optimization of electronic nose MOS sensor array and its application in rapid identification of traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2013, 38(2):161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302003.htm
    韩玉.电子鼻在苍术质量评价中的应用研究[D].北京中医药大学, 2011.

    Han Yu. Application of electronic nose in quality evaluation of Atractylodes lancea[D]. Beijing University of Traditional Chinese Medicine, 2011.
    张晓, 吴宏伟, 于现阔, 鲁亚奇, 罗寒燕, 杨洪军, 许梦莹, 郭日新, 李志勇, 唐力英, 王祝举.基于电子眼技术的穿心莲质量评价[J].中国实验方剂学杂志, 2019, 25(1):189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201901028.htm

    Zhang Xiao, Wu Hong-wei, Yu Xian-kuo, Lu Ya-qi, Luo Han-yan, Yang Hong-jun, Xu Meng-ying, Guo Ri-xin, Li Zhi-yong, Tang Li-ying, Wang Zhu-ju. Quality evaluation of Andrographis paniculata based on electronic eye technology[J]. Chinese Journal of Experimental Prescription, 2019, 25(1):189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201901028.htm
    刘瑞新, 郝小佳, 张慧杰, 张璐, 桂新景, 林兆洲, 罗崇念, 田亮玉, 王艳丽, 冯文豪, 姚静, 李学林.基于电子眼技术的中药川贝母真伪及规格的快速辨识研究[J].中国中药杂志, 2020, 45(14):3441-3451. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202014025.htm

    Liu Rui-xin, Hao Xiao-jia, Zhang Hui-jie, Zhang Lu, Gui Xin-jing, Lin Zhao-zhou, Luo Chong-nian, Tian Liang-yu, Wang Yan-li, Feng Wen-hao, Yao Jing, Li Xue-lin. Rapid identification of the authenticity and specification of Fritillaria cirrhosa based on electronic eye technology[J]. Chinese Journal of Traditional Chinese Medicine, 2020, 45(14):3441-3451. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202014025.htm
    王学勇, 廖采丽, 黄璐琦, 吴浩忠, 刘春生, 杨瑶珺.一种基于电子鼻技术的鹿茸"真伪"快速鉴定方法: CN104251873A[P]. 2014-12-31.

    Wang Xue-yong, Liao Cai-li, Huang Lu-qi, Wu Hao-zhong, Liu Chun-sheng, Yang Yao-jun. A rapid identification method of velvet antler based on electronic nose technology: CN104251873A[P]. 2014-12-31.
    杜瑞超, 王优杰, 吴飞, 冯怡, 徐德生, 洪燕龙, 阮克锋.电子舌对中药滋味的区分辨识[J].中国中药杂志, 2013, 38(2):154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302002.htm

    Du Rui-chao, Wang You-jie, Wu Fei, Feng Yi, Xu De-sheng, Hong Yan-long, Ruan Ke-feng. Identification of taste of traditional Chinese medicine by electronic tongue[J]. Chinese Journal of Traditional Chinese Medicine, 2013, 38(2):154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302002.htm
    段金芳, 肖洋, 刘影, 宋洪伟, 窦志英.一测多评法与电子眼和电子舌相结合优化山茱萸蒸制时间[J].中草药, 2017, 48(6):1108-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201706010.htm

    Duan Jin-Fang, Xiao Yang, Liu Ying, Song Hong-wei, Dou Zhi-ying. Optimization of steaming time of Cornus officinalis by combination of electronic eye and electronic tongue[J]. Chinese Herbal Medicine, 2017, 48(6):1108-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201706010.htm
    黄特辉, 张志杰, 郭媛媛, 王苇, 王添全, 李佳怡, 薛春苗, 曹俊岭.基于电子鼻技术的太子参产地及产地加工方法鉴别[J].中国药学杂志, 2020, 55(10):811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202010012.htm

    Huang Te-hui, Zhang Zhi-jie, Guo Yuan-yuan, Wang Wei, Wang Tian-quan, Li Jia-yi, Xue Chun-miao, Cao Jun-ling. Identification of Pseudostellaria heterophylla producing area and processing method based on electronic nose technology[J]. Chinese Journal of Pharmacy, 2020, 55(10):811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202010012.htm
    Cui S Q, Wu J F, Wang J, Wang X L. Discrimination of American ginseng and Asian ginseng using electronic nose and gas chromatography-mass spectrometry coupled with chemometrics[J]. Journal of Ginseng Research, 2017, 41:85-95. doi: 10.1016/j.jgr.2016.01.002
    Cui S, Wang J, Geng L. Determination of ginseng with different ages using a taste-sensing system[J]. Sensors and Materials, 2013, 25:241-255. http://www.researchgate.net/publication/286097726_Determination_of_Ginseng_with_Different_Ages_Using_a_Taste-Sensing_System
    Li S, Li X, Wang G, Nie L X, Yang Yao J, Wu H Z, Wei F, Zhang J, Tian J G, Lin R C. Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70:605-608. doi: 10.1016/j.jpba.2012.06.009
    Brudzewski K, Osowski S, Golembiecka A. Differential electronic nose and support vector machine for fast recognition of tobacco[J]. Expert Systems with Applications, 2012, 39:9886-9891. doi: 10.1016/j.eswa.2012.02.163
    Zhang H B, Liu T A, Shu R X, Yang K, Ye S, You J L, Ge J. Using EN-NIR with support vector machine for classification of producing year of Tobacco[J]. Spectroscopy and Spectral Analysis, 2018, 38(5):1620-125. http://www.researchgate.net/publication/328074824_Using_EN-NIR_with_Support_Vector_Machine_for_Classification_of_Producing_Year_of_Tobacco
    Sousa Mara E B C, Dias Luís G, Veloso Ana C A, Estevinho Letícia, Peres António M, Machado Adélio A S C. Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue[J]. Talanta, 2014, 128(1):284-292. http://www.sciencedirect.com/science/article/pii/S0039914014003701
    Oroian M, Ropciuc S. Romanian honey authentication using voltammetric electronic tongue Correlation of voltammetric data with physico-chemical parameters and phenolic compounds[J]. Computers and Electronics in Agriculture, 2019, 157:371-379 doi: 10.1016/j.compag.2019.01.008
    吴瑞梅.名优绿茶品质感官评价的仪器化表征研究[D].江苏大学, 2012.

    Wu Rui-mei. Instrumental characterization of sensory evaluation of famous green tea[D]. Jiangsu University, 2012.
    吕海鹏.普洱茶品质的仪器鉴定研究[D].浙江大学, 2013.

    Lu Hai-peng. Instrument identification of Pu'er tea [D]. Zhejiang University, 2013.
    Ghosh A, Tamuly P, Bhattacharyya N, Tudu B, Gogoi N, Bandyopadhyay Rajib. Estimation of theaflavin content in black tea using electronic tongue[J]. Journal of Food Engineering, 2012, 110:71-79. doi: 10.1016/j.jfoodeng.2011.12.007
    Banerjee(Roy) R, Tudu B, Shaw L, Jana A, Bhattacharyya Nabarun, Bandyopadhyay Rajib. Instrumental testing of tea by combining the responses of electronic nose and tongue[J]. Journal of Food Engineering, 2012, 110:356-363. doi: 10.1016/j.jfoodeng.2011.12.037
    Yang Z Y, Dong F, Shimizu K, Kinoshita O, Kanamori M, Morita A, Watanabe Naoharu. Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose[J]. Journal of Food Engineering, 2009, 92:312-316. doi: 10.1016/j.jfoodeng.2008.11.014
    Zhang X X, Li M H, Zhan C, Ma L Y, Zhao L L, Li J M. A comparison of electronic nose and gas chromatography-mass spectrometry on discrimination and prediction of ochratoxin: A content in Aspergillus carbonarius cultured grape-based medium[J]. Food Chemistry, 2019, 297:124850. doi: 10.1016/j.foodchem.2019.05.124
    Orlandi G, Calvini R, Foca G, Pigani L, Simone G V, Ulrici A. Data fusion of electronic eye and electronic tongue signals to monitor grape ripening[J]. Talanta, 2018, 195:181-189. http://www.sciencedirect.com/science/article/pii/S0039914018311986
    Orlandi G, Calvini R, Pigani L, Foca G, Vasile Simone G, Antonelli A, Ulrici A. Electronic eye for the prediction of parameters related to grape ripening[J]. Talanta, 2018, 186:381-388. doi: 10.1016/j.talanta.2018.04.076
    Centonze V, Lippolis V, Cervellieri S, Damascelli A, Casiello G, Pascale M, Logrieco A F, Longobardi F. Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds[J]. Food Chemistry, 2018, 277:25-30. http://www.sciencedirect.com/science/article/pii/s0308814618318806
    惠国华, 吴玉玲, 叶丹丹, 丁文雯.一种利用电子鼻检测芒果新鲜度的方法: CN102621192A[P]. 2012-08-01.

    Hui Guo-hua, Wu Yu-ling, Ye Dan-dan, Ding Wen-wen. A method for detecting mango freshness by electronic nose: CN102621192A[P]. 2012-08-01.
    惠国华, 叶丹丹, 吴玉玲, 丁文雯, 王绿野.一种用于检测番荔枝成熟度的电子鼻及其检测方法: CN102654495A[P]. 2012-09-05.

    Hui Guo-hua, Ye Dan-dan, Wu Yu-ling, Ding Wen-wen, Wang Lu-ye. An electronic nose for detecting the maturity of Annona squamosa and its detection method: CN102654495A [P]. 2012-09-05.
    Kang B S, Lee J E, Park H J. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements[J]. Food Chemistry, 2014, 151:317-23. doi: 10.1016/j.foodchem.2013.11.084
    Rodriguez-Mendez M L, Apetrei C, Gay M, Medina-Plaza C, Saja de J A, Vidal S, Aagaard O, Ugliano M, Wirth J, Cheynier V. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue[J]. Food Chemistry, 2014, 155:91-97. doi: 10.1016/j.foodchem.2014.01.021
    Cetó X, González-Calabuig A, Crespo N, Pérez S, Capdevila J, Puig-Pujol Anna, Valle M.del. Electronic tongues to assess wine sensory descriptors[J]. Talanta, 2017, 162:218-224. http://www.sciencedirect.com/science/article/pii/S0039914016307251
    Šuklje K, Carlin S, Stanstrup J, Antalick G, Blackman J W, Meeks C, Deloire A, Schmidtke L M, Vrhovsek U. Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HS-SPME-GC×GC-TOFMS[J]. Food Chemistry, 2019, 277:753-765. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201519018.htm
    Cetó X, Capdevila J, Mínguez S, Valle M D. Voltammetric bioelectronic tongue for the analysis of phenolic compounds in rosé cava wines[J]. Food Research International, 2014, 55:455-461. doi: 10.1016/j.foodres.2013.11.025
    Huang L, Zhao J W, Chen Q S, Zhang Y H. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques[J]. Food Chemistry, 2014, 145:228-236. doi: 10.1016/j.foodchem.2013.06.073
    Kilgannon A K, Holman B W B, Frank D C, Mawson A J, Collins Damian, Hopkins D L. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes[J]. Meat Science, 2020, 168:108193. doi: 10.1016/j.meatsci.2020.108193
    沈立荣, 裘正军, 姚璐, 丁亚明, 马晓钟, 郭如斌, 尹中, 王震.基于电子鼻技术的金华火腿分级与鉴别方法:CN102692488A[P]. 2012-09-26.

    Shen Li-rong, Qiu Zheng-jun, Yao Lu, Ding Ya-ming, Ma Xiao-zhong, Guo Ru-bin, Yin Zhong, Wang Zhen. Classification and identification method of Jinhua Ham based on electronic nose technology: CN102692488A[P]. 2012-09-26.
    周宇芳, 孟志娟, 杨会成, 廖妙飞, 郑斌, 钟明杰, 肖金星.一种利用电子鼻检测带鱼新鲜度的方法: CN103063709A[P]. 2013-04-24.

    Zhou Yu-fang, Meng Zhi-juan, Yang Hui-cheng, Liao Miao-fei, Zheng Bin, Zhong Ming-jie, Xiao Jin-xing. A method for detecting the freshness of hairtail with electronic nose: CN103063709A[P]. 2013-04-24.
    Yaroshenko I, Kirsanov D, Kartsova L, Bhattacharyya N, Sarkar S, Legin A. On the application of simple matrix methods for electronic tonguedata processing: Case study with black tea samples[J]. Sensors and Actuators B, 2014 (191):67-74. http://smartsearch.nstl.gov.cn/paper_detail.html?id=81dba3a35a93067e59122d0614cc4f2c
    Dong W, Hu R, Long Y, Li H H, Zhang Y J, Zhu K, Chu Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS[J]. Food Chemistry, 2019, 272:723-731. doi: 10.1016/j.foodchem.2018.08.068
    Vivone G, Chanussot J. Fusion of short-wave infrared and visible near-infrared world view-3 data[J]. Information Fusion, 2020, Available online, https://doi.org/10.1016/j.inffus.2020.03.012.
    Simjanoska M, Kochev S, Tanevski J, Bogdanova A M, Papa G, Eftimov T. Multi-level information fusion for learning a blood pressure predictive model using sensor data[J]. Information Fusion, 2020, 58:24-39. doi: 10.1016/j.inffus.2019.12.008
    Muzammal M, Talat R, Sodhro A H, Pirbhulal S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks[J]. Information Fusion, 2020, 58:155-164. http://www.sciencedirect.com/science/article/pii/S1566253519302118
    李文龙.中药标准化的模式分析及思考[N].中国中医药报, 2018年11月15日第5版.

    Li Wen-long. Analysis and reflection on the mode of standardization of traditional Chinese medicine[N]. China Journal of Traditional Chinese Medicine, November 15, 2018, 5th Edition.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (698) PDF downloads(71) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint