扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子传感技术在中药材及农产品分析领域的应用研究进展

冯绘敏 侯一哲 黄天赐 李元祥 李正 李文龙

冯绘敏, 侯一哲, 黄天赐, 李元祥, 李正, 李文龙. 电子传感技术在中药材及农产品分析领域的应用研究进展[J]. 分析测试技术与仪器, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003
引用本文: 冯绘敏, 侯一哲, 黄天赐, 李元祥, 李正, 李文龙. 电子传感技术在中药材及农产品分析领域的应用研究进展[J]. 分析测试技术与仪器, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003
FENG Hui-min, HOU Yi-zhe, HUANG Tian-ci, LI Yuan-xiang, LI Zheng, LI Wen-long. Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products[J]. Analysis and Testing Technology and Instruments, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003
Citation: FENG Hui-min, HOU Yi-zhe, HUANG Tian-ci, LI Yuan-xiang, LI Zheng, LI Wen-long. Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products[J]. Analysis and Testing Technology and Instruments, 2020, 26(4): 239-248. doi: 10.16495/j.1006-3757.2020.04.003

电子传感技术在中药材及农产品分析领域的应用研究进展

doi: 10.16495/j.1006-3757.2020.04.003
基金项目: 

武汉市科技计划项目 2018060402011258

天津市科技计划项目 20ZYJDJC00090

详细信息
    作者简介:

    冯绘敏(1996-), 女, 硕士研究生, 主要从事中药质量标准制定方法研究

    通讯作者:

    李文龙(1980-), 男, 副研究员, 博士生导师, 主要从事中药质量控制技术研究, E-mail:wshlwl@tjutcm.edu.cn

  • 中图分类号: O657.1

Application and Research Progress in Electronic Sensing Technology in Traditional Chinese Medicine and Agricultural Products

  • 摘要: 电子传感技术以其信号易于获得、信息丰富、能够从整体上表征样品性质等优势, 近年来在中药材及农产品分析领域得到日益广泛的应用.对常用的电子传感技术电子眼、电子鼻、电子舌等进行介绍, 对上述技术在中药、烟叶、食品、饮料等领域的应用报道进行综述, 并对其相关的多变量数据分析技术、多源数据融合技术、品牌保护技术及未来仪器研发进行展望, 以期为电子传感技术在中药材及农产品领域的推广应用提供借鉴.
  • [1] 刘瑞新, 陈鹏举, 李学林, 吴子丹, 高晓洁, 陈小菲, 张璐, 王青晓, 李振国.人工智能感官:药学领域的新技术[J].药物分析杂志, 2017, 37(4):559-567. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201704001.htm

    Liu Rui-xin, Chen Peng-ju, Li Xue-lin, Wu Zi-dan, Gao Xiao-jie, Chen Xiao-fei, Zhang Lu, Wang Qing-xiao, Li Zhen-guo. Artificial intelligence senses: new technology in pharmaceutical field[J]. Journal of Pharmaceutical Analysis, 2017, 37(4):559-567. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201704001.htm
    [2] Pasquini C. Near infrared spectroscopy: A mature analytical technique with new perspectives-a review[J]. Analytica Chimica Acta, 2018, 1026:1-29. doi: 10.1016/j.aca.2018.04.032
    [3] Nie P, Zhang J, Feng X, Yu C. Classification of hybrid seeds using near-infrared hyperspectral imagingtechnology combined with deep learning[J]. Sensors & Actuators: B Chemical, 2019, 296:1-12. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113010749.html
    [4] Sun W J, Zhang X, Zhang Z Y, Zhu R H. Data fusion of near-infrared and mid-infrared spectra for identificationof rhubarb[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171:72-79. doi: 10.1016/j.saa.2016.07.039
    [5] Mandrilea L, Barbosa-Pereirab L, Sorensenc K M, Giovannozzi A M, Zeppa G, Engelsen S B, Rossi A M. Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy[J]. Food Chemistry, 2019, 292:47-57. doi: 10.1016/j.foodchem.2019.04.008
    [6] 蒋玉英, 葛宏义, 廉飞宇, 张元, 夏善红.基于THz技术的农产品品质无损检测研究[J].光谱学与光谱分析, 2014, 34(8):2047-2052. doi: 10.3964/j.issn.1000-0593(2014)08-2047-06

    Jiang Yu-ying, Ge Hong-yi, Lian Fei-yu, Zhang Yuan, Xia Shan-hong. Study on nondestructive detection of agricultural product quality based on THz technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2047-2052. doi: 10.3964/j.issn.1000-0593(2014)08-2047-06
    [7] Gowen A A, O'Sullivan C, O'Donnell C P. Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control[J]. Trends in Food Science & Technology, 2012, 25:40-46. http://europepmc.org/abstract/AGR/IND44724940
    [8] Özbalci B, Boyaci I H, Topcu A, Kadılar C, Tamer U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks[J]. Food Chemistry, 2013, 136:1444-1452. doi: 10.1016/j.foodchem.2012.09.064
    [9] Strzemski M, Wójciak-Kosior M, Sowa I, Agacka-Mołdoch M, Draczkowski P, Matosiuk D, Kurach L, Kocjan R, Dresler S. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil[J]. Talanta, 2017, 174:633-637. doi: 10.1016/j.talanta.2017.06.070
    [10] Dais P, Hatzakis E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review[J]. Analytica Chimica Acta, 2013, 765:1-27. doi: 10.1016/j.aca.2012.12.003
    [11] Freitas J V B, Filho E G A, Silva L M A, Zocolo G J, Brito E S D, Gramosa N V. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum[J]. Talanta, 2018, 180:329-336. doi: 10.1016/j.talanta.2017.12.053
    [12] Yan B J, Chen T, Xu Z L, Qu H B. Rapid process development of chromatographic process using direct analysis in real time mass spectrometry as a process analytical technology tool[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94:106-110. doi: 10.1016/j.jpba.2014.01.033
    [13] Wang L, Zeng S, Chen T, Qu H B. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91:202-209. doi: 10.1016/j.jpba.2013.12.034
    [14] Hwa H J, Jun P Y, Tae K H, Kyun O S. Identification of new, old and mixed brown rice using freshness and an electronic eye[J]. Korean Journal of Crop Science, 2018, 63(2):98-105.
    [15] 张慧慧, 孙灵根, 黄学思, 吴纯洁. "电子眼"在中药炮制中应用构想[C].中华中医药学会四大怀药与地道药材研究论坛暨中药炮制分会第二届第五次学术会议与第三届会员代表大会论文集, 2007, 30-36.

    Zhang Hui-hui, Sun Ling-gen, Huang Xue-si, Wu Chun-jie. The application of "electronic eye" in the processing of traditional Chinese medicine[C]. The Fifth Academic Conference and the Third Member Congress of the Fourth Huaiyao and Authentic Medicinal Materials Research Forum of the Chinese Society of Traditional Chinese Medicine, 2007, 30-36.
    [16] Peris M, Escuder-Gilabert L. A 21st century technique for food control: Electronic noses[J]. Analytica Chimica Acta, 2009, 638:1-15. doi: 10.1016/j.aca.2009.02.009
    [17] Xiong Y, Xiao X, Yang X, Xiong Y, Xiao X H, Yang X Y, Yan D, Zhang C, Zou H Q, Lin H, Peng L, Xiao X, Yan Y H. Quality control of Lonicera japonica stored for different months by electronic nose[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91:68-72. doi: 10.1016/j.jpba.2013.12.016
    [18] Campos I, Bataller R, Armero R, Gandia J M, Soto J, Martínez-Máñez Ramón, Gil-Sánchez L. Monitoring grape ripeness using a voltammetric electronic tongue[J]. Food Research International, 2013, 54:1369-1375. doi: 10.1016/j.foodres.2013.10.011
    [19] Cetó X, Pérez S. Voltammetric electronic tongue for vinegar fingerprinting[J]. Talanta, 2020, 219:1-8. http://www.sciencedirect.com/science/article/pii/S0039914020305440
    [20] Rodrigues N, Marx Í M G, Casal S, Dias Luís G, Veloso Ana C A, Pereira José A, Peres António M. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment[J]. Talanta, 2019, 197:363-373. doi: 10.1016/j.talanta.2019.01.055
    [21] Morais de T C B, D R Rodrigues, Carvalho Polari Souto de U T, Lemos S G. A simple voltammetric electronic tongue for the analysis of coffee adulterations[J]. Food Chemistry, 2019, 273:31-38. doi: 10.1016/j.foodchem.2018.04.136
    [22] Xu M, Wang J, Zhu L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics[J]. Food Chemistry, 2019, 289:482-489. doi: 10.1016/j.foodchem.2019.03.080
    [23] Orlandi G, Calvini R, Foca G, Pigani L, Simone G V, Ulrici A. Data fusion of electronic eye and electronic tongue signals to monitor grape ripening[J]. Talanta, 2019, 195:181-189. doi: 10.1016/j.talanta.2018.11.046
    [24] Haddi Z, Mabrouk S, Bougrini M, Tahri K, Sghaier K, Barhoumi H, Bari N E, Maaref A, Jaffrezic-Renault N, Bouchikhi B. E-nose and E-tongue combination for improved recognition of fruit juice samples[J]. Food Chemistry, 2014, 150:246-253. doi: 10.1016/j.foodchem.2013.10.105
    [25] 许舜军, 杨柳, 谢培山, 林伟基.中药气味鉴别的研究现状与展[J].中药新药与临床药理, 2011, 22(2):228-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201102031.htm

    Xu Shun-jun, Yang Liu, Xie Pei-shan, Lin Wei-ji. Research status and development of odor identification of traditional Chinese medicine[J]. New Chinese Medicine and Clinical Pharmacology, 2011, 22 (2):228-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201102031.htm
    [26] 黎量, 杨诗龙, 胥敏, 钟恋, 汪云伟, 艾莉.基于电子鼻、电子舌技术的山楂气、味鉴别[J].中国实验方剂学杂志, 2015, 21(5):99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201505028.htm

    Li Liang, Yang Shi-long, Xu Min, Zhong Lian, Wang Yun-wei, Ai Li. Gas and taste identification of Hawthorn based on electronic nose and tongue technology[J]. Chinese Journal of Experimental Prescription, 2015, 21(5):99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201505028.htm
    [27] 邹慧琴, 刘勇, 陶欧, 林辉, 苏玉贞, 林相龙, 闫永红.电子鼻MOS传感器阵列优化及其在中药材快速鉴别中的应用[J].中国中药杂志, 2013, 38(2):161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302003.htm

    Zou Hui-qin, Liu Yong, Tao ou, Lin Hui, Su Yu-zhen, Lin Xiang-long, Yan Yong-hong. Optimization of electronic nose MOS sensor array and its application in rapid identification of traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2013, 38(2):161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302003.htm
    [28] 韩玉.电子鼻在苍术质量评价中的应用研究[D].北京中医药大学, 2011.

    Han Yu. Application of electronic nose in quality evaluation of Atractylodes lancea[D]. Beijing University of Traditional Chinese Medicine, 2011.
    [29] 张晓, 吴宏伟, 于现阔, 鲁亚奇, 罗寒燕, 杨洪军, 许梦莹, 郭日新, 李志勇, 唐力英, 王祝举.基于电子眼技术的穿心莲质量评价[J].中国实验方剂学杂志, 2019, 25(1):189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201901028.htm

    Zhang Xiao, Wu Hong-wei, Yu Xian-kuo, Lu Ya-qi, Luo Han-yan, Yang Hong-jun, Xu Meng-ying, Guo Ri-xin, Li Zhi-yong, Tang Li-ying, Wang Zhu-ju. Quality evaluation of Andrographis paniculata based on electronic eye technology[J]. Chinese Journal of Experimental Prescription, 2019, 25(1):189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201901028.htm
    [30] 刘瑞新, 郝小佳, 张慧杰, 张璐, 桂新景, 林兆洲, 罗崇念, 田亮玉, 王艳丽, 冯文豪, 姚静, 李学林.基于电子眼技术的中药川贝母真伪及规格的快速辨识研究[J].中国中药杂志, 2020, 45(14):3441-3451. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202014025.htm

    Liu Rui-xin, Hao Xiao-jia, Zhang Hui-jie, Zhang Lu, Gui Xin-jing, Lin Zhao-zhou, Luo Chong-nian, Tian Liang-yu, Wang Yan-li, Feng Wen-hao, Yao Jing, Li Xue-lin. Rapid identification of the authenticity and specification of Fritillaria cirrhosa based on electronic eye technology[J]. Chinese Journal of Traditional Chinese Medicine, 2020, 45(14):3441-3451. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202014025.htm
    [31] 王学勇, 廖采丽, 黄璐琦, 吴浩忠, 刘春生, 杨瑶珺.一种基于电子鼻技术的鹿茸"真伪"快速鉴定方法: CN104251873A[P]. 2014-12-31.

    Wang Xue-yong, Liao Cai-li, Huang Lu-qi, Wu Hao-zhong, Liu Chun-sheng, Yang Yao-jun. A rapid identification method of velvet antler based on electronic nose technology: CN104251873A[P]. 2014-12-31.
    [32] 杜瑞超, 王优杰, 吴飞, 冯怡, 徐德生, 洪燕龙, 阮克锋.电子舌对中药滋味的区分辨识[J].中国中药杂志, 2013, 38(2):154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302002.htm

    Du Rui-chao, Wang You-jie, Wu Fei, Feng Yi, Xu De-sheng, Hong Yan-long, Ruan Ke-feng. Identification of taste of traditional Chinese medicine by electronic tongue[J]. Chinese Journal of Traditional Chinese Medicine, 2013, 38(2):154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201302002.htm
    [33] 段金芳, 肖洋, 刘影, 宋洪伟, 窦志英.一测多评法与电子眼和电子舌相结合优化山茱萸蒸制时间[J].中草药, 2017, 48(6):1108-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201706010.htm

    Duan Jin-Fang, Xiao Yang, Liu Ying, Song Hong-wei, Dou Zhi-ying. Optimization of steaming time of Cornus officinalis by combination of electronic eye and electronic tongue[J]. Chinese Herbal Medicine, 2017, 48(6):1108-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201706010.htm
    [34] 黄特辉, 张志杰, 郭媛媛, 王苇, 王添全, 李佳怡, 薛春苗, 曹俊岭.基于电子鼻技术的太子参产地及产地加工方法鉴别[J].中国药学杂志, 2020, 55(10):811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202010012.htm

    Huang Te-hui, Zhang Zhi-jie, Guo Yuan-yuan, Wang Wei, Wang Tian-quan, Li Jia-yi, Xue Chun-miao, Cao Jun-ling. Identification of Pseudostellaria heterophylla producing area and processing method based on electronic nose technology[J]. Chinese Journal of Pharmacy, 2020, 55(10):811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202010012.htm
    [35] Cui S Q, Wu J F, Wang J, Wang X L. Discrimination of American ginseng and Asian ginseng using electronic nose and gas chromatography-mass spectrometry coupled with chemometrics[J]. Journal of Ginseng Research, 2017, 41:85-95. doi: 10.1016/j.jgr.2016.01.002
    [36] Cui S, Wang J, Geng L. Determination of ginseng with different ages using a taste-sensing system[J]. Sensors and Materials, 2013, 25:241-255. http://www.researchgate.net/publication/286097726_Determination_of_Ginseng_with_Different_Ages_Using_a_Taste-Sensing_System
    [37] Li S, Li X, Wang G, Nie L X, Yang Yao J, Wu H Z, Wei F, Zhang J, Tian J G, Lin R C. Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70:605-608. doi: 10.1016/j.jpba.2012.06.009
    [38] Brudzewski K, Osowski S, Golembiecka A. Differential electronic nose and support vector machine for fast recognition of tobacco[J]. Expert Systems with Applications, 2012, 39:9886-9891. doi: 10.1016/j.eswa.2012.02.163
    [39] Zhang H B, Liu T A, Shu R X, Yang K, Ye S, You J L, Ge J. Using EN-NIR with support vector machine for classification of producing year of Tobacco[J]. Spectroscopy and Spectral Analysis, 2018, 38(5):1620-125. http://www.researchgate.net/publication/328074824_Using_EN-NIR_with_Support_Vector_Machine_for_Classification_of_Producing_Year_of_Tobacco
    [40] Sousa Mara E B C, Dias Luís G, Veloso Ana C A, Estevinho Letícia, Peres António M, Machado Adélio A S C. Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue[J]. Talanta, 2014, 128(1):284-292. http://www.sciencedirect.com/science/article/pii/S0039914014003701
    [41] Oroian M, Ropciuc S. Romanian honey authentication using voltammetric electronic tongue Correlation of voltammetric data with physico-chemical parameters and phenolic compounds[J]. Computers and Electronics in Agriculture, 2019, 157:371-379 doi: 10.1016/j.compag.2019.01.008
    [42] 吴瑞梅.名优绿茶品质感官评价的仪器化表征研究[D].江苏大学, 2012.

    Wu Rui-mei. Instrumental characterization of sensory evaluation of famous green tea[D]. Jiangsu University, 2012.
    [43] 吕海鹏.普洱茶品质的仪器鉴定研究[D].浙江大学, 2013.

    Lu Hai-peng. Instrument identification of Pu'er tea [D]. Zhejiang University, 2013.
    [44] Ghosh A, Tamuly P, Bhattacharyya N, Tudu B, Gogoi N, Bandyopadhyay Rajib. Estimation of theaflavin content in black tea using electronic tongue[J]. Journal of Food Engineering, 2012, 110:71-79. doi: 10.1016/j.jfoodeng.2011.12.007
    [45] Banerjee(Roy) R, Tudu B, Shaw L, Jana A, Bhattacharyya Nabarun, Bandyopadhyay Rajib. Instrumental testing of tea by combining the responses of electronic nose and tongue[J]. Journal of Food Engineering, 2012, 110:356-363. doi: 10.1016/j.jfoodeng.2011.12.037
    [46] Yang Z Y, Dong F, Shimizu K, Kinoshita O, Kanamori M, Morita A, Watanabe Naoharu. Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose[J]. Journal of Food Engineering, 2009, 92:312-316. doi: 10.1016/j.jfoodeng.2008.11.014
    [47] Zhang X X, Li M H, Zhan C, Ma L Y, Zhao L L, Li J M. A comparison of electronic nose and gas chromatography-mass spectrometry on discrimination and prediction of ochratoxin: A content in Aspergillus carbonarius cultured grape-based medium[J]. Food Chemistry, 2019, 297:124850. doi: 10.1016/j.foodchem.2019.05.124
    [48] Orlandi G, Calvini R, Foca G, Pigani L, Simone G V, Ulrici A. Data fusion of electronic eye and electronic tongue signals to monitor grape ripening[J]. Talanta, 2018, 195:181-189. http://www.sciencedirect.com/science/article/pii/S0039914018311986
    [49] Orlandi G, Calvini R, Pigani L, Foca G, Vasile Simone G, Antonelli A, Ulrici A. Electronic eye for the prediction of parameters related to grape ripening[J]. Talanta, 2018, 186:381-388. doi: 10.1016/j.talanta.2018.04.076
    [50] Centonze V, Lippolis V, Cervellieri S, Damascelli A, Casiello G, Pascale M, Logrieco A F, Longobardi F. Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds[J]. Food Chemistry, 2018, 277:25-30. http://www.sciencedirect.com/science/article/pii/s0308814618318806
    [51] 惠国华, 吴玉玲, 叶丹丹, 丁文雯.一种利用电子鼻检测芒果新鲜度的方法: CN102621192A[P]. 2012-08-01.

    Hui Guo-hua, Wu Yu-ling, Ye Dan-dan, Ding Wen-wen. A method for detecting mango freshness by electronic nose: CN102621192A[P]. 2012-08-01.
    [52] 惠国华, 叶丹丹, 吴玉玲, 丁文雯, 王绿野.一种用于检测番荔枝成熟度的电子鼻及其检测方法: CN102654495A[P]. 2012-09-05.

    Hui Guo-hua, Ye Dan-dan, Wu Yu-ling, Ding Wen-wen, Wang Lu-ye. An electronic nose for detecting the maturity of Annona squamosa and its detection method: CN102654495A [P]. 2012-09-05.
    [53] Kang B S, Lee J E, Park H J. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements[J]. Food Chemistry, 2014, 151:317-23. doi: 10.1016/j.foodchem.2013.11.084
    [54] Rodriguez-Mendez M L, Apetrei C, Gay M, Medina-Plaza C, Saja de J A, Vidal S, Aagaard O, Ugliano M, Wirth J, Cheynier V. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue[J]. Food Chemistry, 2014, 155:91-97. doi: 10.1016/j.foodchem.2014.01.021
    [55] Cetó X, González-Calabuig A, Crespo N, Pérez S, Capdevila J, Puig-Pujol Anna, Valle M.del. Electronic tongues to assess wine sensory descriptors[J]. Talanta, 2017, 162:218-224. http://www.sciencedirect.com/science/article/pii/S0039914016307251
    [56] Šuklje K, Carlin S, Stanstrup J, Antalick G, Blackman J W, Meeks C, Deloire A, Schmidtke L M, Vrhovsek U. Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HS-SPME-GC×GC-TOFMS[J]. Food Chemistry, 2019, 277:753-765. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201519018.htm
    [57] Cetó X, Capdevila J, Mínguez S, Valle M D. Voltammetric bioelectronic tongue for the analysis of phenolic compounds in rosé cava wines[J]. Food Research International, 2014, 55:455-461. doi: 10.1016/j.foodres.2013.11.025
    [58] Huang L, Zhao J W, Chen Q S, Zhang Y H. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques[J]. Food Chemistry, 2014, 145:228-236. doi: 10.1016/j.foodchem.2013.06.073
    [59] Kilgannon A K, Holman B W B, Frank D C, Mawson A J, Collins Damian, Hopkins D L. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes[J]. Meat Science, 2020, 168:108193. doi: 10.1016/j.meatsci.2020.108193
    [60] 沈立荣, 裘正军, 姚璐, 丁亚明, 马晓钟, 郭如斌, 尹中, 王震.基于电子鼻技术的金华火腿分级与鉴别方法:CN102692488A[P]. 2012-09-26.

    Shen Li-rong, Qiu Zheng-jun, Yao Lu, Ding Ya-ming, Ma Xiao-zhong, Guo Ru-bin, Yin Zhong, Wang Zhen. Classification and identification method of Jinhua Ham based on electronic nose technology: CN102692488A[P]. 2012-09-26.
    [61] 周宇芳, 孟志娟, 杨会成, 廖妙飞, 郑斌, 钟明杰, 肖金星.一种利用电子鼻检测带鱼新鲜度的方法: CN103063709A[P]. 2013-04-24.

    Zhou Yu-fang, Meng Zhi-juan, Yang Hui-cheng, Liao Miao-fei, Zheng Bin, Zhong Ming-jie, Xiao Jin-xing. A method for detecting the freshness of hairtail with electronic nose: CN103063709A[P]. 2013-04-24.
    [62] Yaroshenko I, Kirsanov D, Kartsova L, Bhattacharyya N, Sarkar S, Legin A. On the application of simple matrix methods for electronic tonguedata processing: Case study with black tea samples[J]. Sensors and Actuators B, 2014 (191):67-74. http://smartsearch.nstl.gov.cn/paper_detail.html?id=81dba3a35a93067e59122d0614cc4f2c
    [63] Dong W, Hu R, Long Y, Li H H, Zhang Y J, Zhu K, Chu Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS[J]. Food Chemistry, 2019, 272:723-731. doi: 10.1016/j.foodchem.2018.08.068
    [64] Vivone G, Chanussot J. Fusion of short-wave infrared and visible near-infrared world view-3 data[J]. Information Fusion, 2020, Available online, https://doi.org/10.1016/j.inffus.2020.03.012.
    [65] Simjanoska M, Kochev S, Tanevski J, Bogdanova A M, Papa G, Eftimov T. Multi-level information fusion for learning a blood pressure predictive model using sensor data[J]. Information Fusion, 2020, 58:24-39. doi: 10.1016/j.inffus.2019.12.008
    [66] Muzammal M, Talat R, Sodhro A H, Pirbhulal S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks[J]. Information Fusion, 2020, 58:155-164. http://www.sciencedirect.com/science/article/pii/S1566253519302118
    [67] 李文龙.中药标准化的模式分析及思考[N].中国中医药报, 2018年11月15日第5版.

    Li Wen-long. Analysis and reflection on the mode of standardization of traditional Chinese medicine[N]. China Journal of Traditional Chinese Medicine, November 15, 2018, 5th Edition.
  • 加载中
计量
  • 文章访问数:  698
  • HTML全文浏览量:  179
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2020-12-17
  • 刊出日期:  2020-12-30

目录

    /

    返回文章
    返回