Preparation of Molecular Imprinting on Surface of Magnetic Metal-Organic Framework and Application of Enrichment of 2, 4-Dichlorophenoxyacetic Acid in Vegetables Samples
-
摘要: 以固相研磨法制备的磁性金属有机框架为基质,2, 4-二氯苯酚为傀儡模板分子,3-氨基丙基三乙氧基硅烷为功能单体,在室温下通过溶胶-凝胶法制备了磁性分子印迹材料Fe3O4@ZIF-MIP. 使用X射线衍射、红外光谱、扫描电镜、透射电镜和氮气吸附对分子印迹材料进行了表征. 当2, 4-苯氧乙酸的质量浓度为500 μg/mL时,Fe3O4@ZIF-MIP的吸附容量为120.31 mg/g,印迹因子为3.64,材料重复使用6次后性能保持在95%以上,所建立的方法适用于蔬菜中低含量2, 4-二氯苯氧乙酸含量的富集.
-
关键词:
- 2, 4-二氯苯氧乙酸 /
- 分子印迹 /
- 磁固相萃取
Abstract: The magnetic molecular-imprinted material Fe3O4@ZIF-MIP was prepared by a sol-gel method at room temperature with magnetic metal-organic frameworks as the matrixes, 2, 4-dichlophenol as the pseudotemplate molecule and 3-aminopropyltriethoxysilane as the functional monomer. The molecular-imprinted materials were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption. The adsorption capacity of Fe3O4@ZIF-MIP was 120.31 mg/g at a concentration of 500 μg/mL of 2, 4-phenoxyacetic acid, and the blotting factor was 3.64, the properties of the material remained above 95% after repeated use for 6 times, and the established method is suitable for the enrichment of low content 2, 4-dichlorophenoxyacetic acid in vegetables. -
表 1 Fe3O4@ZIF和Fe3O4@ZIF-MIP的比表面积和孔结构参数
Table 1. Specific surface area and pore structure parameters of Fe3O4@ZIF and Fe3O4@ZIF-MIP
材料 SBET/(m2/g)a VBJH/(cm3/g)b DBJH/nmc 吸附 解吸 吸附 解吸 Fe3O4@ZIF 419.13 0.11 0.11 10.67 10.26 Fe3O4@ZIF-MIP 16.74 0.03 0.03 11.88 12.10 a: BET surface area
b: BJH adsorption and desorption cumulative volume of pores
c: BJH adsorption and desorption average pore width (4 V/A)表 2 Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP对分析物的吸附动力学模型参数
Table 2. Model parameters for adsorption kinetics of Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP for 2, 4-D
材料 准一级动力学模型ln(Qe-Qt)=lnQe-kt 准二级动力学模型t/Qt=1/kQe2+t/Qe Qe/(mg/g) k/(g/mg/min) r Qe/(mg/g) k/(g/mg/min) r Fe3O4@ZIF-MIP 0.32 0.020 1 0.269 6 12.33 1.934 5 0.999 0 Fe3O4@ZIF-NIP 0.45 0.007 6 0.712 7 3.86 0.056 5 0.978 2 表 3 Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP对分析物的等温吸附模型
Table 3. Isothermal adsorption model parameters of Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP on analytes
材料 Langmuir模型 Freundlich模型 Qm/(mg/g) KL/(L/mg) r KF(L/mg) n r Fe3O4@ZIF-MIP / / 0.806 0 0.129 1 0.917 3 0.994 6 Fe3O4@ZIF-NIP 15.90 0.004 2 0.690 2 0.013 0 0.827 1 0.763 5 表 4 本文方法与文献报道方法的测定结果的比较
Table 4. Comparison of analytical method used in experiment with other determination methods reported in literature
材料 样品 样品体积/mL 吸附时间/min 检测方法 吸附量/(mg/g) LOD/(ng/mL) 参考文献 CNTs@SiO2@MIPs Water 10 150 HPLC-SPD 2.3 100.0 [18] MIPs@ZIF-8 Water 10 60 UV 108.1 - [19] Fe3O4@MIP Tap water, Chinese cabbage 1.0 60 HPLC-DAD 9.9 4.0 [20] mag-MWCNTs-DMIPs Crop 10 30 UPLC-MS/MS 17.8 1.3~1.5 [21] C-C6Cl6 Water 10 30 HPLC-DAD 89.5 - [22] Fe3O4@SiO2-NH2 Water 200 60 HPLC-UV 158.0 - [23] GO/Fe3O4/TBA Water, Vegetables 10 30 HPLC-UV - 7.0 [24] Fe3O4@graphene Water 200 360 HPLC-UV 31.6 - [25] Fe3O4@ZIF-MIP Vegetables 5 30 HPLC-UV 120.3 5.0 本文方法 表 5 蔬菜样品中的检测和加标回收试验
Table 5. Detection and spiked recovery experiments in vegetable samples
蔬菜样品 加标量/(μg/g) 测定值/(μg/g) 加标回收率/% RSD (n=3)/% 黄瓜 0.0 0.75 - 3.8 1.2 1.89 95.3 3.4 3.0 3.65 96.7 0.7 12.0 10.68 82.8 5.6 青椒 0.0 - - - 1.2 1.18 98.8 0.3 3.0 2.53 84.5 2.0 12.0 9.70 80.8 1.9 西红柿 0.0 - - - 1.2 1.02 85.2 1.4 3.0 2.44 81.5 0.7 12.0 8.62 71.8 1.9 豆芽 0.0 - - - 1.2 1.26 104.8 0.8 3.0 2.98 99.4 6.5 12.0 9.97 83.1 6.4 表 6 标准方法处理蔬菜样品的加标回收试验
Table 6. Spiked recovery experiments of vegetable samples treated by standard method
蔬菜样品 加标量/(μg/g) 测定值/(μg/g) 加标回收率/% RSD (n=3)/% 黄瓜 0.00 - - - 0.32 0.34 105.8 0.5 0.80 0.83 103.8 1.4 3.20 2.76 86.4 4.5 青椒 0.00 - - - 0.32 0.29 89.5 0.1 0.80 0.73 91.2 0.6 3.20 2.51 78.4 0.3 西红柿 0.00 - - - 0.32 0.26 82.0 1.8 0.80 0.84 104.8 0.5 3.20 2.82 88.0 1.2 豆芽 0.00 - - - 0.32 0.32 100.6 0.1 0.80 0.69 86.6 0.6 3.20 2.70 84.5 2.7 -
[1] Zhao C D, Ji Y S, Shao Y L, Jiang X M, Zhang H X. Novel molecularly imprinted polymer prepared by nanoattapulgite as matrix for selective solid-phase extraction of diethylstilbestrol[J]. Journal of Chromatography A, 2009, 1216(44): 7546-7552. doi: 10.1016/j.chroma.2009.06.011 [2] Dowlatshah S, Saraji M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples[J]. Analytica Chimica Acta, 2020, 1098: 37-46. doi: 10.1016/j.aca.2019.11.013 [3] Ren J W, Ledwaba M, Musyoka N M, Langmi H W, Mathe M, Liao S J, Pang W. Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349∶169-197. doi: 10.1016/j.ccr.2017.08.017 [4] Pander M, Janeta M, Bury W. Quest for an efficient 2-in-1 MOF-based catalytic system for cycloaddition of CO2 to epoxides under mild conditions[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8344-8352. doi: 10.1021/acsami.0c20437 [5] Wang C, Shang H Y, Wang Y, Li J, Guo S Y, Guo J, Du Y K. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis[J]. Nanoscale, 2021, 13(15): 7279-7284. doi: 10.1039/D1NR00075F [6] Han S, Huang Y G, Watanabe T, Dai Y, Walton K S, Nair S, Sholl D S, Meredith J C. High-throughput screening of metal-organic frameworks for CO2 separation[J]. ACS Combinatorial Science, 2012, 14(4): 263-267. doi: 10.1021/co3000192 [7] Qian Q H, Asinger P A, Lee M J, Han G, Mizrahi R K, Lin S R, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. doi: 10.1021/acs.chemrev.0c00119 [8] Qasem N A A, Ben-Mansour R, Habib M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177[J]. Applied Energy, 2017, 210: 317-326. http://www.onacademic.com/detail/journal_1000040117390210_ae9c.html [9] Gandara-Loe J, Souza B E, Missyul A, Giraldo G, Tan J C, Silvestre-Albero J. MOF-based polymeric nanocomposite films as potential materials for drug delivery devices in ocular therapeutics[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30189-30197. doi: 10.1021/acsami.0c07517 [10] Lázaro I A, Wells C J R, Forgan R S. Multivariate modulation of the Zr MOF UiO‐66 for defect‐controlled combination anticancer drug delivery[J]. Angewandte Chemie, 2020, 59(13): 5211-5217. doi: 10.1002/anie.201915848 [11] Xu K, Zhan C Y, Zhao W, Yu X, Zhu Q, Yang L. Tunable resistance of MOFs films via an anion exchange strategy for advanced gas sensing[J]. Journal of Hazardous Materials, 2021, 416: 125906. doi: 10.1016/j.jhazmat.2021.125906 [12] Yang G L, Jiang X L, Xu H, Zhao B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327 doi: 10.1002/smll.202005327 [13] Wang Z, He Y, Zhu L, Zhang L, Liu B, Zhang Y K, Duan T. Natural porous wood decorated with ZIF-8 for high efficient iodine capture[J]. Materials Chemistry and Physics, 2021, 258: 123964. doi: 10.1016/j.matchemphys.2020.123964 [14] Zhang R, Tao C A, Chen R, Wu L F, Zou XX, Wang J F. Ultrafast synthesis of Ni-MOF in one minute by ball milling[J]. Nanomaterials, 2018, 8 (12): 1067. doi: 10.3390/nano8121067 [15] 麻敏瑞. 2, 4-二氯苯氧乙酸分子印迹材料的制备及其在食品样品分析中的应用[D]. 兰州: 兰州大学, 2021. [16] Zou Y L, Zhang Y T, Liu X Y, Zhang H X. Solvent-free synthetic Fe3O4@ZIF-8 coated lipase as a magnetic-responsive pickering emulsifier for interfacial biocatalysis[J]. Catalysis Letters, 2020, 150: 3608-3616. doi: 10.1007/s10562-020-03240-w [17] Li S S, Zhang Y T, Mu S, Ma M R, Liu X Y, Zhang H X. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC[J]. Microchimica Acta, 2020, 187(7): 1-10. doi: 10.1007/s00604-020-04362-z [18] Yang W J, Jiao F P, Zhou L, Chen X Q, Jiang X Y. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2, 4-dichlorophenoxyacetic acid in environmental water[J]. Applied Surface Science, 2013, 284: 692-699. doi: 10.1016/j.apsusc.2013.07.157 [19] Yang X, Chen J, Liu H, Li X F, Zhong S A. Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2, 4-dichlorophenoxyacetic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering, 2019, 570: 244-250. doi: 10.1016/j.colsurfa.2019.03.038 [20] Sheng L, Jin Y L, He Y H, Huang Y Y, Yan L S, Zhao R. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2, 4-dichlorophenoxyacetic acid in real samples[J]. Talanta, 2017, 174: 725-732. doi: 10.1016/j.talanta.2017.07.002 [21] Yuan X C, Yuan Y X, Gao X, Xiong Z L, Zhao L S. Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals[J]. Food Chemistry, 2020, 333: 127540. doi: 10.1016/j.foodchem.2020.127540 [22] Kusmierek K, Szala M, Swiatkowski A. Adsorption of 2, 4-dichlorophenol and 2, 4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 371-378. doi: 10.1016/j.jtice.2016.03.036 [23] Mohammadi F, Esrafili A, Kermani M, Behbahani M. Application of modified magnetic nanoparticles with amine groups as an efficient solid sorbent for simultaneous removal of 2, 4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid from aqueous solution: optimization and modeling[J]. Journal of the Iranian Chemical Society, 2018, 15: 421-429. doi: 10.1007/s13738-017-1243-5 [24] Mohammadnia M, Heydari R, Sohrabi M R. Determination of 2, 4-dichlorophenoxyacetic acid in food and water samples using a modified graphene oxide sorbent and high-performance liquid chromatography[J]. Journal of Environmental Science and Health, Part B, 2020, 55(4): 293-300. doi: 10.1080/03601234.2019.1692613 [25] Liu W, Yang Q, Yang Z L, Wang W J. Adsorption of 2, 4-D on magnetic graphene and mechanism study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 367-375. http://www.cugb.edu.cn/uploadCms/file/20600/papers_upload/20170601151413299275.pdf -