扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性金属有机框架表面分子印迹的制备及富集蔬菜样品中2, 4-二氯苯氧乙酸的应用

麻敏瑞 祝新月 刘晓燕 张海霞

麻敏瑞, 祝新月, 刘晓燕, 张海霞. 磁性金属有机框架表面分子印迹的制备及富集蔬菜样品中2, 4-二氯苯氧乙酸的应用[J]. 分析测试技术与仪器, 2021, 27(4): 260-272. doi: 10.16495/j.1006-3757.2021.04.005
引用本文: 麻敏瑞, 祝新月, 刘晓燕, 张海霞. 磁性金属有机框架表面分子印迹的制备及富集蔬菜样品中2, 4-二氯苯氧乙酸的应用[J]. 分析测试技术与仪器, 2021, 27(4): 260-272. doi: 10.16495/j.1006-3757.2021.04.005
MA Min-rui, ZHU Xin-yue, LIU Xiao-yan, ZHANG Hai-xia. Preparation of Molecular Imprinting on Surface of Magnetic Metal-Organic Framework and Application of Enrichment of 2, 4-Dichlorophenoxyacetic Acid in Vegetables Samples[J]. Analysis and Testing Technology and Instruments, 2021, 27(4): 260-272. doi: 10.16495/j.1006-3757.2021.04.005
Citation: MA Min-rui, ZHU Xin-yue, LIU Xiao-yan, ZHANG Hai-xia. Preparation of Molecular Imprinting on Surface of Magnetic Metal-Organic Framework and Application of Enrichment of 2, 4-Dichlorophenoxyacetic Acid in Vegetables Samples[J]. Analysis and Testing Technology and Instruments, 2021, 27(4): 260-272. doi: 10.16495/j.1006-3757.2021.04.005

磁性金属有机框架表面分子印迹的制备及富集蔬菜样品中2, 4-二氯苯氧乙酸的应用

doi: 10.16495/j.1006-3757.2021.04.005
详细信息
    作者简介:

    麻敏瑞(1996-), 女, 硕士, 主要从事样品前处理研究工作, E-mail: mamr18@lzu.edu.cn

    通讯作者:

    张海霞(1970-),女,博士生导师,《分析测试技术与仪器》编委,主要从事分离科学与光谱分析工作,E-mail: zhanghx@lzu.edu.cn

  • 中图分类号: O641.4;O635

Preparation of Molecular Imprinting on Surface of Magnetic Metal-Organic Framework and Application of Enrichment of 2, 4-Dichlorophenoxyacetic Acid in Vegetables Samples

  • 摘要: 以固相研磨法制备的磁性金属有机框架为基质,2, 4-二氯苯酚为傀儡模板分子,3-氨基丙基三乙氧基硅烷为功能单体,在室温下通过溶胶-凝胶法制备了磁性分子印迹材料Fe3O4@ZIF-MIP. 使用X射线衍射、红外光谱、扫描电镜、透射电镜和氮气吸附对分子印迹材料进行了表征. 当2, 4-苯氧乙酸的质量浓度为500 μg/mL时,Fe3O4@ZIF-MIP的吸附容量为120.31 mg/g,印迹因子为3.64,材料重复使用6次后性能保持在95%以上,所建立的方法适用于蔬菜中低含量2, 4-二氯苯氧乙酸含量的富集.
  • 图  1  Fe3O4@ZIF-MIP的合成示意图

    Figure  1.  Schematic diagram of synthesis of Fe3O4@ZIF-MIP

    图  2  模拟ZIF-8、Fe3O4@ZIF、Fe3O4@ZIF-NIP和Fe3O4@ZIF-MIP的XRD谱图(A),Fe3O4@ZIF、Fe3O4@ZIF-NIP和Fe3O4@ZIF-MIP的IR谱图(B)

    Figure  2.  XRD spectra of simulated ZIF-8, Fe3O4@ZIF, Fe3O4@ZIF-NIP and Fe3O4@ZIF-MIP (A), FT-IR spectra of Fe3O4@ZIF, Fe3O4@ZIF-NIP and Fe3O4@ZIF-MIP (B)

    图  3  Fe3O4@ZIF(A)、Fe3O4@ZIF-MIP(B)和Fe3O4@ZIF-NIP(C)的SEM图,Fe3O4(D)、Fe3O4@ZIF(E)和Fe3O4@ZIF-MIP(F)的TEM图

    Figure  3.  SEM images of Fe3O4@ZIF(A), Fe3O4@ZIF-MIP(B) and Fe3O4@ZIF-NIP(C), TEM images of Fe3O4(D), Fe3O4@ZIF(E) and Fe3O4@ZIF-MIP(F)

    图  4  Fe3O4@ZIF和Fe3O4@ZIF-MIP的氮气吸附-解吸等温线

    Figure  4.  Nitrogen adsorption-desorption isotherms of Fe3O4@ZIF and Fe3O4@ZIF-MIP

    图  5  Fe3O4@ZIF和Fe3O4@ZIF-MIP的热重图

    Figure  5.  Thermogravimetric drawings of Fe3O4@ZIF and Fe3O4@ZIF-MIP

    图  6  Fe3O4@ZIF(A)和Fe3O4@ZIF-MIP(B)的表面水接触角光学照片

    Figure  6.  Surface water contact angle optical photos of Fe3O4@ZIF (A) and Fe3O4@ZIF-MIP (B)

    图  7  Fe3O4@ZIF、Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP的磁滞回线

    (插图为使用外加磁场之后的照片)

    Figure  7.  Hysteresis loops of Fe3O4@ZIF, Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP

    (illustration: photo after applying an external magnetic field)

    图  8  解吸溶剂、解吸时间和解吸体积的优化

    Figure  8.  Optimization of desorption solvent, desorption time and desorption volume

    图  9  萃取时间和pH优化

    Figure  9.  Optimization of extraction time and solution pH

    图  10  Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP吸附动力学曲线(A)和吸附等温线(B)

    Figure  10.  Adsorption kinetic curves (A) and adsorption isotherms (B) of Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP

    图  11  Fe3O4@ZIF-MIP、Fe3O4@ZIF-NIP和Fe3O4@ZIF对不同化合物的吸附情况(A), Fe3O4@ZIF-MIP的重复使用次数(B)

    Figure  11.  Adsorption of Fe3O4@ZIF-MIP, Fe3O4@ZIF-NIP and Fe3O4@ZIF on different compounds (A), number of reuse of Fe3O4@ZIF-MIP (B)

    图  12  黄瓜(A)、青椒(B)、西红柿(C)和豆芽(D)样品经材料富集后(a)和加标3.0 μg/g(b)时的色谱图

    Figure  12.  Chromatograms of cucumber (A), green pepper (B), small tomato (C) and bean sprout (D) samples after material enrichment (a) and at spiked 3.0 μg/g (b)

    表  1  Fe3O4@ZIF和Fe3O4@ZIF-MIP的比表面积和孔结构参数

    Table  1.   Specific surface area and pore structure parameters of Fe3O4@ZIF and Fe3O4@ZIF-MIP

    材料 SBET/(m2/g)a VBJH/(cm3/g)b DBJH/nmc
    吸附 解吸 吸附 解吸
    Fe3O4@ZIF 419.13 0.11 0.11 10.67 10.26
    Fe3O4@ZIF-MIP 16.74 0.03 0.03 11.88 12.10
    a: BET surface area
    b: BJH adsorption and desorption cumulative volume of pores
    c: BJH adsorption and desorption average pore width (4 V/A)
    下载: 导出CSV

    表  2  Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP对分析物的吸附动力学模型参数

    Table  2.   Model parameters for adsorption kinetics of Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP for 2, 4-D

    材料 准一级动力学模型ln(Qe-Qt)=lnQe-kt 准二级动力学模型t/Qt=1/kQe2+t/Qe
    Qe/(mg/g) k/(g/mg/min) r Qe/(mg/g) k/(g/mg/min) r
    Fe3O4@ZIF-MIP 0.32 0.020 1 0.269 6 12.33 1.934 5 0.999 0
    Fe3O4@ZIF-NIP 0.45 0.007 6 0.712 7 3.86 0.056 5 0.978 2
    下载: 导出CSV

    表  3  Fe3O4@ZIF-MIP和Fe3O4@ZIF-NIP对分析物的等温吸附模型

    Table  3.   Isothermal adsorption model parameters of Fe3O4@ZIF-MIP and Fe3O4@ZIF-NIP on analytes

    材料 Langmuir模型 Freundlich模型
    Qm/(mg/g) KL/(L/mg) r KF(L/mg) n r
    Fe3O4@ZIF-MIP / / 0.806 0 0.129 1 0.917 3 0.994 6
    Fe3O4@ZIF-NIP 15.90 0.004 2 0.690 2 0.013 0 0.827 1 0.763 5
    下载: 导出CSV

    表  4  本文方法与文献报道方法的测定结果的比较

    Table  4.   Comparison of analytical method used in experiment with other determination methods reported in literature

    材料 样品 样品体积/mL 吸附时间/min 检测方法 吸附量/(mg/g) LOD/(ng/mL) 参考文献
    CNTs@SiO2@MIPs Water 10 150 HPLC-SPD 2.3 100.0 [18]
    MIPs@ZIF-8 Water 10 60 UV 108.1 - [19]
    Fe3O4@MIP Tap water, Chinese cabbage 1.0 60 HPLC-DAD 9.9 4.0 [20]
    mag-MWCNTs-DMIPs Crop 10 30 UPLC-MS/MS 17.8 1.3~1.5 [21]
    C-C6Cl6 Water 10 30 HPLC-DAD 89.5 - [22]
    Fe3O4@SiO2-NH2 Water 200 60 HPLC-UV 158.0 - [23]
    GO/Fe3O4/TBA Water, Vegetables 10 30 HPLC-UV - 7.0 [24]
    Fe3O4@graphene Water 200 360 HPLC-UV 31.6 - [25]
    Fe3O4@ZIF-MIP Vegetables 5 30 HPLC-UV 120.3 5.0 本文方法
    下载: 导出CSV

    表  5  蔬菜样品中的检测和加标回收试验

    Table  5.   Detection and spiked recovery experiments in vegetable samples

    蔬菜样品 加标量/(μg/g) 测定值/(μg/g) 加标回收率/% RSD (n=3)/%
    黄瓜 0.0 0.75 - 3.8
    1.2 1.89 95.3 3.4
    3.0 3.65 96.7 0.7
    12.0 10.68 82.8 5.6
    青椒 0.0 - - -
    1.2 1.18 98.8 0.3
    3.0 2.53 84.5 2.0
    12.0 9.70 80.8 1.9
    西红柿 0.0 - - -
    1.2 1.02 85.2 1.4
    3.0 2.44 81.5 0.7
    12.0 8.62 71.8 1.9
    豆芽 0.0 - - -
    1.2 1.26 104.8 0.8
    3.0 2.98 99.4 6.5
    12.0 9.97 83.1 6.4
    下载: 导出CSV

    表  6  标准方法处理蔬菜样品的加标回收试验

    Table  6.   Spiked recovery experiments of vegetable samples treated by standard method

    蔬菜样品 加标量/(μg/g) 测定值/(μg/g) 加标回收率/% RSD (n=3)/%
    黄瓜 0.00 - - -
    0.32 0.34 105.8 0.5
    0.80 0.83 103.8 1.4
    3.20 2.76 86.4 4.5
    青椒 0.00 - - -
    0.32 0.29 89.5 0.1
    0.80 0.73 91.2 0.6
    3.20 2.51 78.4 0.3
    西红柿 0.00 - - -
    0.32 0.26 82.0 1.8
    0.80 0.84 104.8 0.5
    3.20 2.82 88.0 1.2
    豆芽 0.00 - - -
    0.32 0.32 100.6 0.1
    0.80 0.69 86.6 0.6
    3.20 2.70 84.5 2.7
    下载: 导出CSV
  • [1] Zhao C D, Ji Y S, Shao Y L, Jiang X M, Zhang H X. Novel molecularly imprinted polymer prepared by nanoattapulgite as matrix for selective solid-phase extraction of diethylstilbestrol[J]. Journal of Chromatography A, 2009, 1216(44): 7546-7552. doi: 10.1016/j.chroma.2009.06.011
    [2] Dowlatshah S, Saraji M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples[J]. Analytica Chimica Acta, 2020, 1098: 37-46. doi: 10.1016/j.aca.2019.11.013
    [3] Ren J W, Ledwaba M, Musyoka N M, Langmi H W, Mathe M, Liao S J, Pang W. Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349∶169-197. doi: 10.1016/j.ccr.2017.08.017
    [4] Pander M, Janeta M, Bury W. Quest for an efficient 2-in-1 MOF-based catalytic system for cycloaddition of CO2 to epoxides under mild conditions[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8344-8352. doi: 10.1021/acsami.0c20437
    [5] Wang C, Shang H Y, Wang Y, Li J, Guo S Y, Guo J, Du Y K. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis[J]. Nanoscale, 2021, 13(15): 7279-7284. doi: 10.1039/D1NR00075F
    [6] Han S, Huang Y G, Watanabe T, Dai Y, Walton K S, Nair S, Sholl D S, Meredith J C. High-throughput screening of metal-organic frameworks for CO2 separation[J]. ACS Combinatorial Science, 2012, 14(4): 263-267. doi: 10.1021/co3000192
    [7] Qian Q H, Asinger P A, Lee M J, Han G, Mizrahi R K, Lin S R, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. doi: 10.1021/acs.chemrev.0c00119
    [8] Qasem N A A, Ben-Mansour R, Habib M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177[J]. Applied Energy, 2017, 210: 317-326. http://www.onacademic.com/detail/journal_1000040117390210_ae9c.html
    [9] Gandara-Loe J, Souza B E, Missyul A, Giraldo G, Tan J C, Silvestre-Albero J. MOF-based polymeric nanocomposite films as potential materials for drug delivery devices in ocular therapeutics[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30189-30197. doi: 10.1021/acsami.0c07517
    [10] Lázaro I A, Wells C J R, Forgan R S. Multivariate modulation of the Zr MOF UiO‐66 for defect‐controlled combination anticancer drug delivery[J]. Angewandte Chemie, 2020, 59(13): 5211-5217. doi: 10.1002/anie.201915848
    [11] Xu K, Zhan C Y, Zhao W, Yu X, Zhu Q, Yang L. Tunable resistance of MOFs films via an anion exchange strategy for advanced gas sensing[J]. Journal of Hazardous Materials, 2021, 416: 125906. doi: 10.1016/j.jhazmat.2021.125906
    [12] Yang G L, Jiang X L, Xu H, Zhao B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327 doi: 10.1002/smll.202005327
    [13] Wang Z, He Y, Zhu L, Zhang L, Liu B, Zhang Y K, Duan T. Natural porous wood decorated with ZIF-8 for high efficient iodine capture[J]. Materials Chemistry and Physics, 2021, 258: 123964. doi: 10.1016/j.matchemphys.2020.123964
    [14] Zhang R, Tao C A, Chen R, Wu L F, Zou XX, Wang J F. Ultrafast synthesis of Ni-MOF in one minute by ball milling[J]. Nanomaterials, 2018, 8 (12): 1067. doi: 10.3390/nano8121067
    [15] 麻敏瑞. 2, 4-二氯苯氧乙酸分子印迹材料的制备及其在食品样品分析中的应用[D]. 兰州: 兰州大学, 2021.
    [16] Zou Y L, Zhang Y T, Liu X Y, Zhang H X. Solvent-free synthetic Fe3O4@ZIF-8 coated lipase as a magnetic-responsive pickering emulsifier for interfacial biocatalysis[J]. Catalysis Letters, 2020, 150: 3608-3616. doi: 10.1007/s10562-020-03240-w
    [17] Li S S, Zhang Y T, Mu S, Ma M R, Liu X Y, Zhang H X. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC[J]. Microchimica Acta, 2020, 187(7): 1-10. doi: 10.1007/s00604-020-04362-z
    [18] Yang W J, Jiao F P, Zhou L, Chen X Q, Jiang X Y. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2, 4-dichlorophenoxyacetic acid in environmental water[J]. Applied Surface Science, 2013, 284: 692-699. doi: 10.1016/j.apsusc.2013.07.157
    [19] Yang X, Chen J, Liu H, Li X F, Zhong S A. Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2, 4-dichlorophenoxyacetic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering, 2019, 570: 244-250. doi: 10.1016/j.colsurfa.2019.03.038
    [20] Sheng L, Jin Y L, He Y H, Huang Y Y, Yan L S, Zhao R. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2, 4-dichlorophenoxyacetic acid in real samples[J]. Talanta, 2017, 174: 725-732. doi: 10.1016/j.talanta.2017.07.002
    [21] Yuan X C, Yuan Y X, Gao X, Xiong Z L, Zhao L S. Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals[J]. Food Chemistry, 2020, 333: 127540. doi: 10.1016/j.foodchem.2020.127540
    [22] Kusmierek K, Szala M, Swiatkowski A. Adsorption of 2, 4-dichlorophenol and 2, 4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 371-378. doi: 10.1016/j.jtice.2016.03.036
    [23] Mohammadi F, Esrafili A, Kermani M, Behbahani M. Application of modified magnetic nanoparticles with amine groups as an efficient solid sorbent for simultaneous removal of 2, 4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid from aqueous solution: optimization and modeling[J]. Journal of the Iranian Chemical Society, 2018, 15: 421-429. doi: 10.1007/s13738-017-1243-5
    [24] Mohammadnia M, Heydari R, Sohrabi M R. Determination of 2, 4-dichlorophenoxyacetic acid in food and water samples using a modified graphene oxide sorbent and high-performance liquid chromatography[J]. Journal of Environmental Science and Health, Part B, 2020, 55(4): 293-300. doi: 10.1080/03601234.2019.1692613
    [25] Liu W, Yang Q, Yang Z L, Wang W J. Adsorption of 2, 4-D on magnetic graphene and mechanism study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 367-375. http://www.cugb.edu.cn/uploadCms/file/20600/papers_upload/20170601151413299275.pdf
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  191
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-09-13
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回