Study on Model Transfer of Fourier Transform Infrared Spectrometer Based on Wavenumber Calibration
-
摘要: 傅里叶变换红外光谱仪具有扫描速度快、分辨率高、波数精度高、灵敏度高和光谱范围宽等优点,因而应用于各个领域. 但在实际应用中,由于仪器间的差异、仪器自身随时间的变化或者样品特性等问题,导致在一台仪器上建立的校正模型不能推广至其他仪器长期使用,使得傅里叶变换红外光谱法(FTIR)的应用受到了校正模型的限制,因此如何实现整机的波数校正并进一步实现模型传递是仪器应用的重要研究内容之一. 通过高分辨率测试条件下水峰的峰值点对整机光谱进行波数校正,并进一步研究模型传递的效果,其结果表明波数的准确度和一致性是模型传递的重要因素,有利于傅里叶红外光谱仪的应用与开发.Abstract: Fourier transform infrared spectrometer (FTIR) is used in various fields because of its advantages such as fast scanning speed, high resolution, high wavenumber accuracy, high sensitivity and wide spectral range. However, in practical applications, the calibration model established on one instrument cannot be extended to other long-term instruments due to the differences between instruments, the changes of instruments with time, and the characteristics of samples. As a result, the application of FTIR is limited by the correction model. Therefore, how to realize the wavenumber correction of the whole machine and to further realize the model transfer is one of the important research contents of the application of instrument. The wavenumber of the spectrum of the whole machine was corrected by the peak point of the water peak under the condition of high-resolution test. The results showed that the accuracy and consistency of wavenumbers are important factors for model transmission, and is beneficial to the application and development of FTIR.
-
Key words:
- FTIR /
- wavenumber consistency /
- model transfer
-
表 1 不同仪器的波数准确度
Table 1. Wavenumber accuracy of different instruments
/cm-1 仪器型号 EXPEC 1680 EXPEC 1630 1# 2# 3# 4# 5# 1# 2# 3# 4# 波数准确度 0.01 0.01 0.01 1.69 6.17 0.02 0.02 0.01 0.29 表 2 不同EXPEC 1680模型验证结果
Table 2. Validation results for different EXPEC 1680 models
标准气体 浓度/(mg/m3) 1680-2# 示值误差/% 1680-3# 示值误差/% 1680-4# 示值误差/% 1680-5# 示值误差/% N2O 120 119.99 -0.01 118.50 -1.25 145.63 21.36 61.60 -48.67 80 79.86 -0.18 82.07 2.59 108.14 35.18 41.99 -47.51 50 50.04 0.08 51.15 2.29 64.30 28.60 25.53 -48.95 20 20.26 1.31 20.66 3.30 / / / / CO 120 120.82 0.68 120.54 0.45 130.30 8.58 84.01 -29.99 80 80.38 0.48 81.85 2.31 86.59 8.24 59.56 -25.55 50 50.35 0.70 50.80 1.59 53.90 7.80 39.11 -21.78 20 21.46 7.32 20.87 4.36 / / / / NO 120 122.51 2.09 121.90 1.58 83.86 -30.12 198.98 65.82 80 81.20 1.50 80.84 1.05 57.82 -27.72 137.49 71.86 50 49.50 -1.00 49.20 -1.60 34.47 -31.07 79.52 59.04 20 18.86 -5.70 20.36 1.80 / / / / SO2 120 118.08 -1.60 118.39 -1.34 116.99 -2.51 89.03 -25.81 80 79.84 -0.20 79.86 -0.18 77.30 -3.38 59.07 -26.16 50 48.61 -2.78 48.81 -2.38 47.39 -5.23 30.29 -39.43 20 19.66 -1.69 19.34 -3.32 / / / / CH4 120 118.09 -1.59 120.17 0.14 128.56 7.13 52.84 -55.97 80 76.83 -3.96 79.48 -0.65 76.45 -4.44 38.56 -51.80 50 47.61 -4.78 49.93 -0.15 45.25 -9.50 23.37 -53.27 20 18.86 -5.70 20.21 1.06 / / / / 表 3 不同EXPEC 1630模型验证结果
Table 3. Validation results for different EXPEC 1630 models
标准气体 浓度/(mg/m3) 1630-2# 示值误差/% 1630-3# 示值误差/% 1630-4# 示值误差/% HCl 250 239.50 -4.20 239.18 -4.33 207.40 -17.04 120 121.91 1.59 121.87 1.56 98.51 -17.91 80 82.00 2.50 81.70 2.12 63.31 -20.86 50 49.30 -1.40 48.02 -3.97 39.40 -21.20 CO 250 247.33 -1.07 245.50 -1.80 232.40 -7.04 120 117.97 -1.69 117.46 -2.12 111.28 -7.27 80 79.42 -0.72 78.46 -1.92 78.03 -2.46 50 49.39 -1.23 48.62 -2.77 47.97 -4.07 NO 250 / / / / / / 120 116.23 -3.14 114.82 -4.32 109.18 -9.02 80 76.78 -4.02 75.39 -5.76 74.10 -7.38 50 47.84 -4.33 47.20 -5.60 46.14 -7.73 SO2 250 245.90 -1.64 237.85 -4.86 232.30 -7.08 120 117.60 -2.00 115.46 -3.78 111.98 -6.68 80 77.76 -2.80 77.14 -3.58 74.62 -6.72 50 49.12 -1.77 48.50 -3.00 46.67 -6.67 CH4 250 248.53 -0.59 246.98 -1.21 230.13 -7.95 120 118.91 -0.91 118.48 -1.27 113.94 -5.05 80 81.01 1.26 78.34 -2.08 76.38 -4.52 50 49.40 -1.20 48.35 -3.30 46.84 -6.33 -
[1] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2016: 262-289.WENG Shi-fu, XU Yi-zhuang. Fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2016: 262-289. [2] 孔祥荣, 马国儒, 管旭东, 陈红岩, 肖磊, 魏巍. 傅里叶变换红外光谱法在火灾烟气分析测试中的应用[J]. 新材料产业, 2016(1): 50-53. doi: 10.3969/j.issn.1008-892X.2016.01.012KONG Xiang-rong, MA Guo-ru, GUAN Xu-dong, CHEN Hong-yan, XIAO Lei, WEI Wei. Application of fourier transform infrared spectroscopy in fire flue gas analysis and testing[J]. New Materials Industry, 2016(1): 50-53. doi: 10.3969/j.issn.1008-892X.2016.01.012 [3] 鞠薇. 环境污染气体的FTIR光谱特征提取及定性识别方法研究[D]. 合肥: 合肥工业大学, 2019.JU Wei. Research on feature extraction and qualitative identification method for the Fourier transform infrared spectra of atmospheric gaseous pollutants[D]. Hefei: Hefei University of Technology, 2019. [4] 张勇, 曹春昱, 冯文英, 徐明, 苏振华, 刘晓萌, 吕卫军. ATR-FTIR分析技术在制浆造纸工业中的研究与应用[J]. 光谱学与光谱分析, 2011, 31(3): 652-655. doi: 10.3964/j.issn.1000-0593(2011)03-0652-04ZHANG Yong, CAO Chun-yu, FENG Wen-ying, XU Ming, SU Zheng-hua, LIU Xiao-meng, LV Wei-jun. Research and application of ATR-FTIR analysis technology in pulp and paper industry[J]. Spectroscopy and Spectral Analysis, 2011, 31(3): 652-655. doi: 10.3964/j.issn.1000-0593(2011)03-0652-04 [5] 刘丽娴. 差分傅里叶变换红外光声光谱大气污染气体检测研究[D]. 成都: 电子科技大学, 2017.LIU Li-xian. Differential Fourier transfomr infrared photoacoustic spectroscopy study for atmosphere contaminants detection[D]. Chengdu: University of Electronic Science and Technology of China, 2017. [6] 李梦, 杨瑶珺, 刘杰, 吕晓娜, 李红霞, 王文祎. 应用红外光谱定量分析模型测定进口血竭中血竭素的含量[J]. 西部中医药, 2017, 30(6): 22-24. doi: 10.3969/j.issn.1004-6852.2017.06.007LI Meng, YANG Yao-jun, LIU Jie, LV Xiao-na, LI Hong-xia, WANG Wen-yi. Application of infrared spectrum quantitative analysis model to the content determination of dracorhodin in foreign XueJie[J]. Western Journal of Traditional Chinese Medicine, 2017, 30(6): 22-24. doi: 10.3969/j.issn.1004-6852.2017.06.007 [7] 周新奇, 马帅, 刘妍, 慎石磊, 郭中原, 俞晓峰, 刘立鹏, 韩双来, 张晓丹. 高温傅里叶变换红外气体分析仪研制与应用[J]. 分析测试学报, 2020, 39(10): 1299-1304. doi: 10.3969/j.issn.1004-4957.2020.10.018ZHOU Xin-qi, MA Shuai, LIU Yan, SHEN Shi-lei, GUO Zhong-yuan, YU Xiao-feng, LIU Li-peng, HAN Shuang-lai, ZHANG Xiao-dan. Development and application of a high temperature gas analyzer based on Fourier transform infrared spectroscopy[J]. Journal of Instrumental Analysis, 2020, 39(10): 1299-1304. doi: 10.3969/j.issn.1004-4957.2020.10.018 [8] 徐波, 叶晓新, 张毅, 杨晓龙, 李发帝. 利用便携式FTIR技术获取城市餐饮VOCs排放特征[J]. 大气与环境光学学报, 2020, 15(5): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY202005005.htmXU Bo, YE Xiao-xin, ZHANG Yi, YANG Xiao-long, LI Fa-di. Emission characteristics of VOCs from urban catering using portable FTIR technology[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY202005005.htm [9] 叶树彬. 傅里叶变换红外光谱定性识别分析方法研究[D]. 合肥: 中国科学技术大学, 2017.YE Shu-bin. Study on qualitative identification methods of unknown components with Fourier transform infrared specturm[D]. Hefei: University of Science and Technology of China, 2017. [10] 高明亮. 基于傅里叶变换红外光谱技术的多组分气体定量分析研究[D]. 合肥: 中国科学技术大学, 2010.GAO Ming-liang. Study on multi-component gases quantitative analysis based on ftir[D]. Hefei: University of Science and Technology of China, 2010. [11] 许禄, 邵学广. 化学计量学方法[M]. 2版. 北京: 科学出版社, 2004.XU Lu, SHAO Xue-guang. Methods of Chemometrics[M]. Beijing: Science Press, 2004. [12] 褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011.CHU Xiao-li. Molecular spectroscopy analytical technology combined with chemometrics and its applications[M]. Beijing: Chemical Industry Press, 2011. [13] 张琳, 张黎明, 李燕, 刘丙萍, 胡兰萍, 王俊德. 正交信号校正用于傅里叶变换红外光谱的模型传递[J]. 分析化学, 2005, 33(12): 1709-1712. doi: 10.3321/j.issn:0253-3820.2005.12.010ZHANG Lin, ZHANG Li-ming, LI Yan, LIU Bing-ping, HU Lan-ping, WANG Jun-de. Orthogonal signal correction used for calibration transfer of Fourier transform infrared spectra[J]. Chinese Journal of Analytical Chemistry, 2005, 33(12): 1709-1712. doi: 10.3321/j.issn:0253-3820.2005.12.010 [14] Woody N A, Feudale R N, Myles A J, Brown S D. Transfer of multivariate calibrations between four near-infrared spectrometers using orthogonal signal correction[J]. Analytical Chemistry, 2004, 76(9): 2595-2600. doi: 10.1021/ac035382g [15] 中华人民共和国国家质量监督检验检疫总局. 国家标准: 傅里叶变换红外光谱仪: GB/T 21186-2007[S]. 北京: 中国标准出版社, 2007.General Administration of quality supervision, inspection and Quarantine of the people's Republic of China National standard: Fourier transform infrared spectrometer: GB/T 21186-2007[S]. Beijing: China Standards Press, 2007. [16] 环境保护部. 环境保护行业标准: 固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术规范: HJ 75-2017[S]. 北京: 中国环境出版社, 2017.Ministry of environmental protection environmental protection industry standard: Technical specification for continuous monitoring system of flue gas (SO2, NOx, particulate matter) emission from fixed pollution sources: HJ 75-2017[S]. Beijing: China Environment Press, 2017. [17] 环境保护部. 环境保护行业标准: 固定污染源行业标准: 固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法: HJ 76-2017[S]. 北京: 中国环境出版社, 2017.Ministry of environmental protection environmental protection industry standard: fixed pollution source industry standard: technical requirements and detection methods of continuous monitoring system for flue gas (SO2, NOx and particulate matter) emission from fixed pollution sources: HJ 76-2017[S]. Beijing: China Environment Press, 2017. -