扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯化钾及聚乙二醇对聚脯氨酸-精氨酸液-液相分离的协同影响

项东鑫 郑寓 周诗航 陆奕 王艳伟

项东鑫, 郑寓, 周诗航, 陆奕, 王艳伟. 氯化钾及聚乙二醇对聚脯氨酸-精氨酸液-液相分离的协同影响[J]. 分析测试技术与仪器, 2023, 29(1): 1-6. doi: 10.16495/j.1006-3757.2023.01.001
引用本文: 项东鑫, 郑寓, 周诗航, 陆奕, 王艳伟. 氯化钾及聚乙二醇对聚脯氨酸-精氨酸液-液相分离的协同影响[J]. 分析测试技术与仪器, 2023, 29(1): 1-6. doi: 10.16495/j.1006-3757.2023.01.001
XIANG Dongxin, ZHENG Yu, ZHOU Shihang, LU Yi, WANG Yanwei. Cooperative Effect of KCl and Polyethylene Glycol on Liquid-Liquid Phase Separation of Polyproline-Arginine[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 1-6. doi: 10.16495/j.1006-3757.2023.01.001
Citation: XIANG Dongxin, ZHENG Yu, ZHOU Shihang, LU Yi, WANG Yanwei. Cooperative Effect of KCl and Polyethylene Glycol on Liquid-Liquid Phase Separation of Polyproline-Arginine[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 1-6. doi: 10.16495/j.1006-3757.2023.01.001

氯化钾及聚乙二醇对聚脯氨酸-精氨酸液-液相分离的协同影响

doi: 10.16495/j.1006-3757.2023.01.001
基金项目: 国家自然科学基金资助项目(NO.12074289,NO.11574232),浙江省自然科学基金资助项目(NO.Y23A040004)
详细信息
    作者简介:

    项东鑫(1998−),男,研究生,主要从事凝聚态物理研究,E-mail:20451025001@stu.wzu.edu.cn

    通讯作者:

    王艳伟(1981−),女,副教授,主要从事凝聚态物理研究,E-mail:wangyw@wzu.edu.cn

  • 中图分类号: O657; O652. 6

Cooperative Effect of KCl and Polyethylene Glycol on Liquid-Liquid Phase Separation of Polyproline-Arginine

Funds: Supported by National Natural Science Foundation of China (NO.12074289,NO.11574232), National Natural Science Foundation of Zhejiang Province (NO.Y23A040004)
  • 摘要: 由脯氨酸(Proline,P)和精氨酸(Arginine,R)构成的双重复肽是人体内C9ORF72基因异常扩增产生的富含毒性的多肽,其异常扩增及液-液相分离(liquid-liquid phase separation,LLPS)行为是神经退行性疾病发病的重要原因,因此研究多肽的调控行为可以为治疗相关疾病提供帮助. 主要利用光学显微成像以及紫外分光光度计技术,研究35个脯氨酸-精氨酸重复多肽(PR35)的LLPS现象及其调控,并对机制进行分析. 发现PR35的LLPS的发生依赖溶液中氯化钾的浓度,当氯化钾浓度低于2 700 mmol/L时,LLPS不会出现,而其浓度高于2 700 mmol/L时,LLPS会发生. 同时在此临界浓度(2 700 mmol/L)溶液中,加入不同质量分数的分子拥挤剂聚乙二醇(PEG1000)后,发现PEG对LLPS具有促进作用,并且随着PEG质量分数升高,促进作用增强. 同时通过紫外分光光度计对吸光度进行了分析,得到的结论与显微镜的观察结果一致.
  • 图  1  不同KCl溶液中PR35发生LLPS的相图及紫外吸光度变化散点图(PR35最终浓度始终为100 μmol/L,比例标尺为2 μm)

    (a)50 mmol/L KCl,(b)1 200 mmol/L KCl,(c)2 700 mmol/L KCl,(d)3 000 mmol/L KCl,(e) 3 200 mmol/L KCl,(f)3 600 mmol/L KCl,(g) PR35在不同KCl溶液中的相行为变化范围图,(h)PR35在不同KCl浓度下吸光度变化的散点图

    Figure  1.  LLPS phase images and UV absorbance variation scattering diagrams of PR35 in different KCl solutions (final concentration of PR35 always 100 μmol/L,Bar=2 μm)

    (a) 50 mmol/L KCl, (b) 1 200 mmol/L KCl, (c) 2 700 mmol/L KCl, (d) 3 000 mmol/L KCl, (e) 3 200 mmol/L KCl, (f) 3 600 mmol/L KCl, (g) variation range diagrams of phase behavior of PR35 in different KCl solutions, (h) scattering diagrams of absorbance variation of PR35 at different concentrations of KCl

    图  2  不同质量分数的PEG1000分别在KCl溶液低浓度及高浓度下PR35的显微成像变化图及PEG1000的作用示意图(蓝色为PR35,红色为PEG1000,比例标尺为2 μm)

    (a) 50 mmol/L KCl+ 0% PEG1000,(b) 50 mmol/L KCl+ 10% PEG1000,(c)~(h) 2 700 mmol/L KCl+(分别为0%,3%,7%,10%,13%,15%)PEG1000

    Figure  2.  Microscopic imaging variations of PEG1000 with different concentrations of PR35 at low and high concentrations of KCl solutions and schematic diagram of the effect of PEG1000 (PR35 in blue and PEG1000 in red, Bar=2 μm)

    (a) 50 mmol/L KCl+ 0% PEG1000, (b) 50 mmol/L KCl+ 10% PEG1000, (c)~(h) 2 700 mmol/L KCl+ (0%, 3%, 7%, 10%, 13%, 15%, respectively) PEG1000

    图  3  不同浓度KCl和PEG1000溶液中的PR35的吸光度变化散点图及液滴直径分布统计图

    Figure  3.  Absorbance variation scattering diagram and droplet diameter distribution statistical diagram of PR35 in KCl and PEG1000 solutions with different concentrations

  • [1] Harper J D, Lieber C M, Lansbury P T. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein[J]. Chemistry & Biology,1997,4 (12):951-959.
    [2] Kam T I, Mao X B, Park H, et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease[J]. Science,2018,362 (6414):eaat8407. doi: 10.1126/science.aat8407
    [3] Pedersen J S, Otzen D E. Amyloid-a state in many guises: survival of the fittest fibril fold[J]. Protein Science:a Publication of the Protein Society,2008,17 (1):2-10.
    [4] Petkova A T, Leapman R D, Guo Z H, et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils[J]. Science,2005,307 (5707):262-265. doi: 10.1126/science.1105850
    [5] Munishkina L A, Henriques J, Uversky V N, et al. Role of protein-water interactions and electrostatics in alpha-synuclein fibril formation[J]. Biochemistry,2004,43 (11):3289-3300. doi: 10.1021/bi034938r
    [6] Gregori M, Cassina V, Brogioli D, et al. Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications[J]. European Biophysics Journal,2010,39 (12):1613-1623. doi: 10.1007/s00249-010-0619-6
    [7] Chiti F, Dobson C M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade[J]. Annual Review of Biochemistry,2017,86 :27-68. doi: 10.1146/annurev-biochem-061516-045115
    [8] Babinchak W M, Haider R, Dumm B K, et al. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain[J]. Journal of Biological Chemistry,2019,294 (16):6306-6317. doi: 10.1074/jbc.RA118.007222
    [9] Zbinden A, Berlanga M P, Rossi P D, et al. Phase separation and neurodegenerative diseases: a disturbance in the force[J]. Developmental Cell,2020,55 (1):45-68. doi: 10.1016/j.devcel.2020.09.014
    [10] Zhang H, Ji X, Li P L, et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases[J]. Science China Life Sciences,2020,63 (7):953-985. doi: 10.1007/s11427-020-1702-x
    [11] Park S, Barnes R, Lin Y X, et al. Dehydration entropy drives liquid-liquid phase separation by molecular crowding[J]. Communications Chemistry,2020,3 :83. doi: 10.1038/s42004-020-0328-8
    [12] Fulton A B. How crowded is the cytoplasm?[J]. Cell,1982,30 (2):345-347. doi: 10.1016/0092-8674(82)90231-8
    [13] Yang D Y, Peng S M, Hartman M R, et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution[J]. Scientific Reports,2013,3 :3165. doi: 10.1038/srep03165
    [14] Stender E G P, Ray S, Norrild R K, et al. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation[J]. Nature Communications,2021,12 :7289. doi: 10.1038/s41467-021-27433-y
    [15] Kwon I, Xiang S H, Kato M, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells[J]. Science,2014,345 (6201):1139-1145. doi: 10.1126/science.1254917
    [16] Maor-Nof M, Shipony Z, Lopez-Gonzalez R, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR)[J]. Cell,2021,184 (3):689-708. doi: 10.1016/j.cell.2020.12.025
    [17] Boeynaems S, Holehouse A S, Weinhardt V, et al. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116 (16):7889-7898. doi: 10.1073/pnas.1821038116
    [18] Minton A P. Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion[J]. Methods in Enzymology,1998,295 :127-149.
    [19] Hu S W, Sheng Y J, Tsao H K. Phase diagram of solvophilic nanodiscs in a polymer solution: depletion attraction[J]. The Journal of Physical Chemistry B,2013,117 (15):4098-4108. doi: 10.1021/jp311657q
    [20] Han C, Takayama S, Park J. Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system[J]. Scientific Reports,2015,5 :11891. doi: 10.1038/srep11891
    [21] Vernon R M, Chong P A, Tsang B, et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation[J]. eLife,2018,7 :e31486. doi: 10.7554/eLife.31486
    [22] Fisher R S, Elbaum-Garfinkle S. Tunable multiphase dynamics of arginine and lysine liquid condensates[J]. Nature Communications,2020,11 :4628. doi: 10.1038/s41467-020-18224-y
    [23] Tesei G, Vazdar M, Jensen M R, et al. Self-association of a highly charged arginine-rich cell-penetrating peptide[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114 (43):11428-11433. doi: 10.1073/pnas.1712078114
    [24] Krainer G, Welsh T J, Joseph J A, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions[J]. Nature Communications,2021,12 :1085. doi: 10.1038/s41467-021-21181-9
    [25] Annunziata O, Asherie N, Lomakin A, et al. Effect of polyethylene glycol on the liquid-liquid phase transition in aqueous protein solutions[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (22):14165-14170. doi: 10.1073/pnas.212507199
    [26] Rawat S, Suri C R, Sahoo D K. Molecular mechanism of polyethylene glycol mediated stabilization of protein[J]. Biochemical and Biophysical Research Communications,2010,392 (4):561-566. doi: 10.1016/j.bbrc.2010.01.067
    [27] Kulkarni A M, Chatterjee A P, Schweizer K S, et al. Effects of polyethylene glycol on protein interactions[J]. The Journal of Chemical Physics,2000,113 (21):9863-9873. doi: 10.1063/1.1321042
  • 加载中
图(3)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  123
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 录用日期:  2022-12-30
  • 修回日期:  2022-12-30
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回