Development and Research of Inert-Gas/Vacuum Sealing Air-Free In-Situ Transfer Module of X-Ray Photoelectron Spectroscopy
-
摘要: 针对空气敏感材料的表面分析,为了获得更加真实的表面组成与结构信息,需要提供一个可以保护样品从制备完成到分析表征过程中不接触大气环境的装置. 通过使用O圈密封和单向密封柱,提出一种简便且有效的设计概念,自主研制了正负压一体式无空气X射线光电子能谱(XPS)原位转移仓,用于空气敏感材料的XPS测试,利用单向密封柱实现不同工作需求下正负压两种模式的任意切换. 通过对空气敏感的金属Li片和CuCl粉末进行XPS分析表明,采用XPS原位转移仓正压和负压模式均可有效避免样品表面接触空气,保证测试结果准确可靠,而且采用正压密封方式转移样品可以提供更长的密封时效性. 研制的原位转移仓具有设计小巧、操作简便、成本低、密封效果好的特点,适合给有需求的用户开放使用.Abstract: For the surface analysis of air sensitive materials, and from the sample preparation to characterization, it is necessary to provide a device that can protect samples from exposing to the atmosphere environment so as to obtain accurate and impactful data of the surface chemistry. Through the use of O-ring and one-way sealing, a simple and effective design concept has been demonstrated, and an inert-gas/vacuum sealing air-free X-ray photoelectron spectroscopic (XPS) in-situ transfer module has been developed to realize the XPS analysis of air sensitive materials. The design of one-way sealing was achieved conveniently by switching between inert-gas and vacuum sealing modes in face of different working requirements. The XPS analysis of air-sensitive metal Li sheets and CuCl powders showed that both the sealing modes (an inert-gas/vacuum sealing) of the XPS in-situ transfer module can effectively avoid air contact on the sample surface, and consequently, can ensure the accuracy and reliability of XPS data. Furthmore, the inert gas sealing mode can keep the sample air-free for a longer time. The homemade XPS in-situ transfer module in this work is characterized by a compact design, convenient operation, low cost and effective sealing, which is suitable for the open access to the users who need it.
-
表 1 通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽
Table 1. Full width at half maxima (FWHM) of Li 1s transferred by two methods (standard and vacuum sealings) and placed in air for different times
样品说明 进样方式 半峰宽/eV 密封放置0 h XPS原位转移仓负压
密封模式转移1.38 密封放置2 h 同上 1.39 密封放置4 h 同上 1.36 密封放置8 h 同上 1.32 密封放置18 h 同上 1.32 密封放置24 h 同上 1.62 暴露15 s 标准样品台进样
(封口袋密封)1.62 表 2 通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽
Table 2. FWHM of Li 1s transferred by two methods (standard and inert gas sealings) and placed in air for different times
样品说明 进样方式 半峰宽/eV 密封放置0 h XPS原位转移仓正压
密封模式转移1.42 密封放置2 h 同上 1.35 密封放置4 h 同上 1.35 密封放置8 h 同上 1.34 密封放置18 h 同上 1.38 密封放置24 h 同上 1.39 密封放置48 h 同上 1.42 密封放置72 h 同上 1.38 暴露15 s 标准样品台进样
(封口袋密封)1.62 -
[1] 黄惠忠. 论表面分析及其在材料研究中的应用[M]. 北京: 科学技术文献出版社, 2002: 16-18. [2] 杨文超, 刘殿方, 高欣, 等. X射线光电子能谱应用综述[J]. 中国口岸科学技术,2022,4(2):30-37YANG Wenchao, LIU Dianfang, GAO Xin, et al. The application of X-ray photoelectron spectroscopy[J]. China Port Science and Technology,2022,4 (2):30-37. [3] 郭沁林. X射线光电子能谱[J]. 物理,2007,36(5):405-410GUO Qinlin. X-ray photoelectron spectroscopy[J]. Physics,2007,36 (5):405-410. [4] Malmgren S, Ciosek K, Lindblad R, et al. Consequences of air exposure on the lithiated graphite SEI[J]. Electrochimica Acta,2013,105 :83-91. doi: 10.1016/j.electacta.2013.04.118 [5] Zhang Y H, Chen S M, Chen Y, et al. Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries[J]. Materials Chemistry Frontiers,2021,5 (9):3681-3691. doi: 10.1039/D1QM00004G [6] 周逸凡, 杨慕紫, 佘峰权, 等. X射线光电子能谱在固态锂离子电池界面研究中的应用[J]. 物理学报,2021,70(17):178801 doi: 10.7498/aps.70.20210180ZHOU Yifan, YANG Muzi, SHE Fengquan, et al. Application of X-ray photoelectron spectroscopy to study interfaces for solid-state lithium ion battery[J]. Acta Physica Sinica,2021,70 (17):178801. doi: 10.7498/aps.70.20210180 [7] Huang J J, Song Y Y, Ma D D, et al. The effect of the support on the surface composition of PtCu alloy nanocatalysts: in situ XPS and HS-LEIS studies[J]. Chinese Journal of Catalysis,2017,38 (7):1229-1236. doi: 10.1016/S1872-2067(17)62857-2 [8] Koley P, Shit S C, Sabri Y M, et al. Looking into more eyes combining in situ spectroscopy in catalytic biofuel upgradation with composition-graded Ag-Co core-shell nanoalloys[J]. ACS Sustainable Chemistry & Engineering,2021,9 (10):3750-3767. [9] Opitz A K, Nenning A, Rameshan C, et al. Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes[J]. Angewandte Chemie (International Ed in English),2015,54 (9):2628-2632. doi: 10.1002/anie.201409527 [10] Czekaj I, Loviat F, Raimondi F, et al. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS)[J]. Applied Catalysis A:General,2007,329 :68-78. doi: 10.1016/j.apcata.2007.06.027 [11] Rutkowski M M, McNicholas K M, Zeng Z Q, et al. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an X-ray photoemission spectroscopy analysis system[J]. Review of Scientific Instruments,2013,84 (6):065105. doi: 10.1063/1.4804195 [12] 伊晓东, 郭建平, 孙海珍, 等. X射线光电子能谱仪样品前处理装置的设计及应用[J]. 分析仪器,2008(5):8-11YI Xiaodong, GUO Jianping, SUN Haizhen, et al. Design of a sample pretreatment device for X-ray photoelectron spectrometer[J]. Analytical Instrumentation,2008 (5):8-11. [13] Aurbach D, Weissman I, Schechter A, et al. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy[J]. Langmuir,1996,12 (16):3991-4007. doi: 10.1021/la9600762 [14] Światowska-Mrowiecka J, Maurice V, Zanna S, et al. XPS study of Li ion intercalation in V2O5 thin films prepared by thermal oxidation of vanadium metal[J]. Electrochimica Acta,2007,52 (18):5644-5653. doi: 10.1016/j.electacta.2006.12.050 [15] Weingarth D, Foelske-Schmitz A, Wokaun A, et al. In situ electrochemical XPS study of the Pt/[BF4] system[J]. Electrochemistry Communications,2011,13 (6):619-622. doi: 10.1016/j.elecom.2011.03.027 [16] Schneider J D, Agocs D B, Prieto A L. Design of a sample transfer holder to enable air-free X-ray photoelectron spectroscopy[J]. Chemistry of Materials,2020,32 (19):8091-8096. doi: 10.1021/acs.chemmater.0c01895 [17] Karamurzov B S, Kochur A G, Misakova L B, et al. Calculation of the pure surface composition of the binary alloy according to XPS data obtained after the alloy surface contact with air[J]. Journal of Structural Chemistry,2015,56 (3):576-581. doi: 10.1134/S0022476615030269 [18] 章小余, 赵志娟. 一种半原位XPS样品转移装置: 中国, 201620925237.5[P]. 2017-02-15. [19] 章小余, 袁震, 赵志娟. 一种半原位X射线光电子能谱分析仪的样品转移装置: 中国, 201720056623. X[P]. 2017-12-08. [20] 袁震, 章小余, 赵志娟. 一种样品转移装置及转移方法: 中国, 2011203822.1[P]. 2022-03-01. [21] 刘芬, 赵志娟, 邱丽美, 等. XPS分析固体粉末时的样品制备法研究[J]. 分析测试技术与仪器,2007,13(2):107-109LIU Fen, ZHAO Zhijuan, QIU Limei, et al. Study of sample preparation method for XPS analysis of powdered samples[J]. Analysis and Testing Technology and Instruments,2007,13 (2):107-109. [22] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M]. Eden Prairie, Minnesota, 1978. [23] Watts J F, Wolstenholme J. 表面分析(XPS和AES)引论[M]. 吴正龙, 译. 上海: 华东理工大学出版社, 2008. -