扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cocktail探针药物法评价玄参对大鼠细胞色素P450酶的影响

魏艳丽 应晓倩 谈文状 吴美玲 江悦娟 丁明星 杜洪建

魏艳丽, 应晓倩, 谈文状, 吴美玲, 江悦娟, 丁明星, 杜洪建. Cocktail探针药物法评价玄参对大鼠细胞色素P450酶的影响[J]. 分析测试技术与仪器, 2023, 29(1): 76-82. doi: 10.16495/j.1006-3757.2023.01.012
引用本文: 魏艳丽, 应晓倩, 谈文状, 吴美玲, 江悦娟, 丁明星, 杜洪建. Cocktail探针药物法评价玄参对大鼠细胞色素P450酶的影响[J]. 分析测试技术与仪器, 2023, 29(1): 76-82. doi: 10.16495/j.1006-3757.2023.01.012
WEI Yanli, YING Xiaoqian, TAN Wenzhuang, WU Meiling, JIANG Yuejuan, DING Mingxing, DU Hongjian. Evaluation of Effect of Scrophularia Ningpoensis on Cytochrome P450 Enzymes Using Cocktail Probe Drug Method[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 76-82. doi: 10.16495/j.1006-3757.2023.01.012
Citation: WEI Yanli, YING Xiaoqian, TAN Wenzhuang, WU Meiling, JIANG Yuejuan, DING Mingxing, DU Hongjian. Evaluation of Effect of Scrophularia Ningpoensis on Cytochrome P450 Enzymes Using Cocktail Probe Drug Method[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 76-82. doi: 10.16495/j.1006-3757.2023.01.012

Cocktail探针药物法评价玄参对大鼠细胞色素P450酶的影响

doi: 10.16495/j.1006-3757.2023.01.012
详细信息
    作者简介:

    魏艳丽(1978−),女,副教授,主要研究领域:临床药理学,E-mail:57103009@qq.com

    通讯作者:

    杜洪建(1972−),男,讲师,主要研究领域:药物制剂方向,E-mail:58291577@qq.com

  • 中图分类号: O657. 63

Evaluation of Effect of Scrophularia Ningpoensis on Cytochrome P450 Enzymes Using Cocktail Probe Drug Method

  • 摘要: 采用Cocktail探针药物法研究玄参对大鼠4种细胞色素P450(CYP3A4、CYP2D6、CYP2C9和CYP1A2)活性的影响. 24只健康雄性SD大鼠(Sprague-Dawley rat)随机分为三组:A组为多剂量组,连续7 d给予150 mg/kg玄参. B组为单剂量组,第7 d给予150 mg/kg玄参. C组为对照组. 第7 d,各组在给予玄参30 min后,再给予4种探针药物的混合溶液,其中咪达唑仑3 mg/kg、美托洛尔20 mg/kg、氯沙坦5 mg/kg、非那西汀5 mg/kg,分别用以评价CYP3A4、CYP2D6、CYP2C9和CYP1A2的活性. 根据设定的时间点收集大鼠血浆样品,处理后的样品采用超高效液相色谱-串联质谱(UHPLC-MS/MS)法测定样品中4种探针药物的浓度. 结果可见,玄参对大鼠体内氯沙坦和非那西汀的药代动力学参数无显著影响. 单剂量的玄参导致咪达唑仑代谢减慢,多剂量给予的玄参显著诱导美托洛尔代谢. 玄参对CYP2C9和CYP1A2的酶活性无明显影响,可以抑制CYP3A4或诱导CYP2D6的酶活性.
  • 图  1  玄参多剂量组、单剂量组和对照组(n=8)中(a)咪达唑仑、(b)美托洛尔、(c)氯沙坦和(d)非那西汀的血药浓度-时间曲线图

    Figure  1.  Mean plasma concentration-time curves of (a) midazolam, (b) metoprolol, (c) losartan and (d) phenacetin after multiple doses or single dose of Scrophularia ningpoensis and control group (n=8)

    表  1  4种探针药和地西泮的质谱参数信息

    Table  1.   Mass spectrometric parameters of four probe drugs and diazepam

    化合物母离子/(m/z)子离子/(m/z)碰撞能/eV碎裂电压/V
    咪达唑仑326.1290.828170
    美托洛尔268.2115.917130
    氯沙坦423.2206.822130
    非那西汀180.1109.924122
    地西泮285.0192.934164
    下载: 导出CSV

    表  2  咪达唑仑、美托洛尔、氯沙坦和非那西汀在血浆中的精密度、准确度、回收率和基质效应

    Table  2.   Precision, accuracy, recovery and matrix effects of metoprolol, phenacetin, midazolam and losartan in rat plasma

    分析物加入质量浓度/
    (ng/mL)
    日内精密度日间精密度回收率/%基质效应/%
    Mean±SD/
    (ng/mL)
    RSD/%RE/%Mean±SD/
    (ng/mL)
    RSD/%RE/%
    咪达唑仑0.250.26±0.027.722.510.25±0.026.520.7093.2388.79
    2.52.41±0.114.53−3.732.62±0.187.034.7091.9799.57
    2524.98±1.626.48−0.1025.59±0.582.292.3690.8092.59
    美托洛尔55.14±0.193.602.755.02±0.112.160.3493.9293.16
    5054.47±3.676.738.9351.50±2.715.272.9989.4994.32
    500539.34±28.645.317.87532.06±15.412.906.4191.2898.14
    氯沙坦2.52.46±0.176.77−1.722.43±0.114.52−2.6999.8997.72
    2523.97±1.154.81−4.1224.12±0.793.26−3.5290.9598.11
    250248.35±7.122.87−0.66251.63±3.791.510.6596.31100.38
    非那西汀55.12±0.152.842.314.98±0.132.54−0.4798.0486.89
    5055.09±2.454.4510.1953.90±1.182.197.7995.8693.57
    500524.67±28.015.344.93525.57±6.001.145.1197.5992.38
    下载: 导出CSV

    表  3  大鼠血浆中咪达唑仑的主要药代动力学参数(Mean±SD, n=8)

    Table  3.   Main pharmacokinetic parameters of midazolam in rat plasma (Mean±SD, n=8)

    参数单位ABC
    AUC0-tμg/ (L·h)29.47+7.4740.13+5.15**24.70+8.03
    AUC0-∞μg/ (L·h)30.35+7.8641.95+5.55**25.77+8.12
    t1/2zh1.04+0.191.25+0.331.19+0.40
    Tmaxh0.66+0.19**0.75+0.00**0.50+0.00
    Vz/FL/kg154.94+40.55131.93+45.08*211.88+80.31
    CLz/FL/h/kg104.35+24.7672.67+10.24**125.63+35.25
    Cmaxμg/L13.80+1.4419.95+6.3618.18+4.91
    A:多剂量组,B:单剂量组,C:对照组. *:p<0.05,**:p<0.01代表与对照组相比存在显著性差异
    下载: 导出CSV

    表  4  大鼠血浆中美托洛尔的主要药代动力学参数(Mean±SD, n=8)

    Table  4.   Main pharmacokinetic parameters of metoprolol in rat plasma (Mean±SD, n=8)

    参数单位ABC
    AUC0-tμg/ (L·h)4 632.88±608.22**5 084.97±604.105 807.72±694.60
    AUC0-∞μg/ (L·h)5 886.34±832.515 816.49±774.526 804.05±1 069.87
    t1/2zh3.96±1.252.84±0.703.03±0.54
    Tmaxh0.50±0.130.54±0.090.56±0.18
    Vz/FL/kg19.42±5.63*14.20±3.2812.90±1.80
    CLz/FL/h/kg3.46±0.533.50±0.513.00±0.46
    Cmaxμg/L1 532.22±153.54**1 707.39±176.29**2 140.76±220.66
    A:多剂量组,B:单剂量组,C:对照组. *:p<0.05,**:p<0.01代表与对照组相比存在显著性差异
    下载: 导出CSV

    表  5  大鼠血浆中氯沙坦的主要药代动力学参数(Mean±SD, n=8)

    Table  5.   Main pharmacokinetic parameters of losartan in rat plasma (Mean±SD, n=8)

    参数单位ABC
    AUC0-tμg/ (L·h)1 750.73±353.281 380.02±245.571 735.48±416.06
    AUC0-∞μg/ (L·h)1 917.43±436.751 591.20±334.331 973.85±433.96
    t1/2zh2.94±0.834.14±2.093.53±0.67
    Tmaxh2.00±0.002.00±0.582.25±0.46
    Vz/FL/kg11.36±3.0918.48±6.4513.73±4.70
    CLz/FL/h/kg2.73±0.613.25±0.632.64±0.58
    Cmaxμg/L290.92±40.33268.25±73.28271.89±73.62
    A:多剂量组,B:单剂量组,C:对照组
    下载: 导出CSV

    表  6  大鼠血浆中非那西汀的主要药代动力学参数(Mean±SD, n=8)

    Table  6.   Main pharmacokinetic parameters of phenacetin in rat plasma (Mean±SD, n=8)

    参数单位ABC
    AUC(0-t)μg/ (L·h)1 454.88±452.601 149.00±360.031 580.96±446.16
    AUC(0-∞)μg/ (L·h)1 455.83±453.301 161.96±360.641 619.49±431.26
    t1/2zh0.52±0.08*0.67±0.181.14±0.65
    Tmaxh0.24±0.030.25±0.000.27±0.10
    Vz/FL/kg2.82±1.054.59±2.085.85±4.07
    CLz/FL/h/kg3.77±1.294.67±1.373.37±1.29
    Cmaxμg/L1 460.41±323.011 404.60±323.731 822.10±558.58
    A:多剂量组,B:单剂量组,C:对照组. *:p<0.05代表与对照组相比存在显著性差异
    下载: 导出CSV
  • [1] Ren D, Shen Z Y, Qin L Q, et al. Pharmacology, phytochemistry, and traditional uses of Scrophularia ningpoensis Hemsl[J]. Journal of Ethnopharmacology,2021,269 :113688. doi: 10.1016/j.jep.2020.113688
    [2] Zhang Q, Liu A, Wang Y S. Scrophularia ningpoensis Hemsl: a review of its phytochemistry, pharmacology, quality control and pharmacokinetics[J]. Journal of Pharmacy and Pharmacology,2021,73 (5):573-600. doi: 10.1093/jpp/rgaa036
    [3] Wang J A, Huang L F, Ren Q, et al. Polysaccharides ofScrophularia ningpoensis Hemsl: extraction, antioxidant, and anti-inflammatory evaluation[J]. Evidence-Based Complementary and Alternative Medicine: ECAM,2020,2020 :8899762.
    [4] Luo S B, Xie L P, Chen J J, et al. Determination and pharmacokinetic profiles of four active components from scrophularia ningpoensis hemsl in rats[J]. Frontiers in Pharmacology,2020,11 :612534.
    [5] Nam H H, Lee A Y, Seo Y S, et al. Three Scrophularia species (Scrophularia buergeriana, S. koraiensis, and S takesimensis) inhibit RANKL-induced osteoclast differentiation in bone marrow-derived macrophages[J]. Plants (Basel, Switzerland),2020,9 (12):1656.
    [6] Ai H L, Qin C L, Ye K, et al. Characterization of the complete chloroplast genome of a well-known Chinese medicinal herb, Scrophularia ningpoensis[J]. Mitochondrial DNA Part B,2020,5 (1):484-485. doi: 10.1080/23802359.2019.1705926
    [7] Zhou S F, Liu J P, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact[J]. Drug Metabolism Reviews,2009,41 (2):89-295. doi: 10.1080/03602530902843483
    [8] Tharanga T D, Jinadasa C V, Risama M F, et al. Genetic variants in the cytochrome P450 2D6 gene in the Sri Lankan population[J]. Indian Journal of Human Genetics,2013,19 (4):392-396. doi: 10.4103/0971-6866.124361
    [9] Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future[J]. Trends in Pharmacological Sciences,2004,25 (4):193-200. doi: 10.1016/j.tips.2004.02.007
    [10] Zuo H L, Huang H Y, Lin Y C D, et al. Enzyme activity of natural products on cytochrome P450[J]. Molecules (Basel, Switzerland),2022,27 (2):515. doi: 10.3390/molecules27020515
    [11] Li X C, Qu X W, Ni j D, et al. Bulleyaconitine A is a sensitive substrate and competitive inhibitor of CYP3A4: One of the possible explanations for clinical adverse reactions[J]. Toxicology and Applied Pharmacology,2022,445 :116024. doi: 10.1016/j.taap.2022.116024
    [12] Molenaar-Kuijsten L, Braal C L, Groenland S L, et al. Effects of the moderate CYP3A4 inhibitor erythromycin on the pharmacokinetics of palbociclib: a randomized crossover trial in patients with breast cancer[J]. Clinical Pharmacology and Therapeutics,2022,111 (2):477-484. doi: 10.1002/cpt.2455
    [13] Azran M, Tanaka K A. Interaction between ticagrelor and CYP3A4 inhibitor: importance of P2Y12 function testing to assess platelet recovery before surgery[J]. Journal of Cardiothoracic and Vascular Anesthesia,2019,33 (11):3221-3222.
    [14] 陈艳芳, 邓西龙, 梁嘉碧. 新型冠状病毒肺炎抗病毒治疗临床药学指引[J]. 今日药学,2022,8:561-572 doi: 10.12048/j.issn.1674-229X.2022.08.001

    Chen Yanfang, Deng Xilong, Liang Jiabi. Clinical pharmaceutical guidelines for antiviral therapy of COVID-19[J]. Pharmacy Today,2022,8 :561-572. doi: 10.12048/j.issn.1674-229X.2022.08.001
    [15] Sundell J, Bienvenu E, Birgersson S, et al. Effects of enzyme induction and polymorphism on the pharmacokinetics of isoniazid and rifampin in tuberculosis/HIV patients[J]. Antimicrobial Agents and Chemotherapy,2022,66 (10):e0227721. doi: 10.1128/aac.02277-21
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  93
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 录用日期:  2023-02-27
  • 修回日期:  2023-02-27
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回