扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位变温X射线衍射测试技术及其影响因素

毛晶 郭倩颖 马利利 龙丽霞 韩雅静 马晓晖

毛晶, 郭倩颖, 马利利, 龙丽霞, 韩雅静, 马晓晖. 原位变温X射线衍射测试技术及其影响因素[J]. 分析测试技术与仪器, 2023, 29(1): 111-116. doi: 10.16495/j.1006-3757.2023.01.017
引用本文: 毛晶, 郭倩颖, 马利利, 龙丽霞, 韩雅静, 马晓晖. 原位变温X射线衍射测试技术及其影响因素[J]. 分析测试技术与仪器, 2023, 29(1): 111-116. doi: 10.16495/j.1006-3757.2023.01.017
MAO Jing, GUO Qianying, MA Lili, LONG Lixia, HAN Yajing, MA Xiaohui. In-Situ Variable Temperature X-Ray Diffraction Testing Technology and Its Effecting Factors[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 111-116. doi: 10.16495/j.1006-3757.2023.01.017
Citation: MAO Jing, GUO Qianying, MA Lili, LONG Lixia, HAN Yajing, MA Xiaohui. In-Situ Variable Temperature X-Ray Diffraction Testing Technology and Its Effecting Factors[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 111-116. doi: 10.16495/j.1006-3757.2023.01.017

原位变温X射线衍射测试技术及其影响因素

doi: 10.16495/j.1006-3757.2023.01.017
基金项目: 天津大学校级教改项目“材料学科大型仪器平台原位测试系统的开发 ”(LAB2021-23)
详细信息
    作者简介:

    毛晶(1983−),女,博士,高级工程师,主要从事透射电子显微镜及X射线衍射仪分析测试工作,E-mail:maojing@tju.edu.cn

    通讯作者:

    马晓晖(1989−),女,硕士,工程师,主要从事X射线衍射及原子力显微镜分析测试工作,E-mail:xiaohuima@tju.edu.cn

  • 中图分类号: O657

In-Situ Variable Temperature X-Ray Diffraction Testing Technology and Its Effecting Factors

Funds: Development of In-Situ Testing System for Large Instrument Platform in Materials Science (LAB2021-23)
  • 摘要:X射线衍射仪中引入加热台,可以实现原位变温X射线衍射分析. 原位试验是研究材料在加热或冷却过程中材料动力学的有效手段. 对变温X射线衍射测试样品的要求、测量方法的原理、布鲁克D8 advance衍射仪原位变温的测试步骤以及测试过程中样品的收缩问题、背底衍射峰干扰等常见影响因素进行了详细的说明,为变温X射线衍射测试提供了具体的试验指导.
  • 图  1  (a)MTC-Furnace加热腔体,(b)MTC-HIGHTEMP+加热腔体示意图

    Figure  1.  Schematic of (a) MTC-Furnace, (b) MTC-HIGHTEMP+

    图  2  高温样品台(MTC-Furnace)构造图

    (a)加热台内部结构,(b)加热台外部结构

    Figure  2.  Structure of high-temperature sample stage (MTC-Furnace)

    (a) interior construction, (b) exterior construction

    图  3  变温衍射测试中样品的放置

    (a)放置在钽片上,(b)放置在坩埚样品槽中

    Figure  3.  Placement of samples in variable temperature diffraction testing

    图  4  测试过程中发生氧化的样品

    (a)测试后样品正面,(b)测试后样品反面

    Figure  4.  Oxidated sample during testing

    (a) front side of sample after testing, (b) reverse side of sample after testing

    图  5  (a)样品测试前,(b)样品测试后污染的坩埚

    Figure  5.  (a) Before sample testing, (b) contaminated crucible after sample testing

    图  6  (a)正常测试完样品的收缩,(b)测试中发生熔化后样品的收缩

    Figure  6.  (a) Normal shrinkage of sample, (b) obvious shrinkage of sample after melting

    图  7  Al-Cu样品的原位变温衍射测试结果

    Figure  7.  In-situ variable temperature X ray diffraction pattern of Al-Cu sample

    图  8  (a)抽真空后收缩严重的样品形貌,(b)改进制样方式后抽真空后的样品形貌

    Figure  8.  (a) Shrinkage of sample after vacuuming process, (b) shape of sample after evacuation with improved sample preparation method

    图  9  坩埚背底衍射峰

    Figure  9.  Diffraction pattern of crucible bottom

    表  1  不同厂家高温加热台主要参数对比

    Table  1.   Comparison of main parameters of high temperature heating stages from different manufacturers

    厂家温度区间/
    升温速度/
    (℃/min)
    温度稳定性/
    布鲁克最高2 1000~50±0.1
    安东帕最高2 3000~50±0.1
    文天精策最高1 2000~30±0.1(<600)
    ±1(>600)
    下载: 导出CSV
  • [1] 权淑丽, 郑开宇. X射线衍射仪在冶金行业的应用[J]. 浙江冶金,2013,8(3):20-23

    QUAN Shuli, ZHENG Kaiyu. Application of X-ray diffractometer in metallurgical industry[J]. Zhejiang metallurgy,2013,8 (3):20-23.
    [2] 蔡泉, 张俊喜, 陈兴, 等. Cu纳米线的高温原位加热XRD研究[J]. 核技术,2007,30(7):565-567 doi: 10.3321/j.issn:0253-3219.2007.07.003

    CAI Quan, ZHANG Junxi, CHEN Xing, et al. Study on Cu nanowires by using in situ high-temperature XRD[J]. Nuclear Techniques,2007,30 (7):565-567. doi: 10.3321/j.issn:0253-3219.2007.07.003
    [3] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报,2018,32(20):3584-3589 doi: 10.11896/j.issn.1005-023X.2018.20.016

    YAO Gang, FU Mingjie. Analysis of phase change in the thermal process of TNW700 high-temperature titanium alloy[J]. Materials Review,2018,32 (20):3584-3589. doi: 10.11896/j.issn.1005-023X.2018.20.016
    [4] 郭振琪, 王宁, 付涛, 等. 一种测定晶体取向及其分布的简便XRD方法[J]. 无机材料学报,2002,17(3):460-464 doi: 10.3321/j.issn:1000-324X.2002.03.012

    GUO Zhenqi, WANG Ning, FU Tao, et al. A simple XRD method for determining crystal orientation and its distribution[J]. Journal of Inorganic Materials,2002,17 (3):460-464. doi: 10.3321/j.issn:1000-324X.2002.03.012
    [5] 田志宏, 张秀华, 田志广. X射线衍射技术在材料分析中的应用[J]. 工程与试验,2009,49(3):40-42 doi: 10.3969/j.issn.1674-3407.2009.03.011

    TIAN Zhihong, ZHANG Xiuhua, TIAN Zhiguang. Application of X-ray diffraction technology in material analysis[J]. Engineering & Test,2009,49 (3):40-42. doi: 10.3969/j.issn.1674-3407.2009.03.011
    [6] 马礼敦. X射线衍射在材料结构表征中的应用[J]. 理化检验(物理分册),2009,45(8):501-510

    MA Lidun. Application of X-ray diffraction in characterization of material structure[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing),2009,45 (8):501-510.
    [7] 马利静, 郭烈锦. 采用原位变温X射线衍射技术研究不同气氛下TiO2的相变机理[J]. 光谱学与光谱分析,2011,31(4):1133-1137 doi: 10.3964/j.issn.1000-0593(2011)04-1133-05

    MA Lijing, GUO Liejin. Study of the phase transformation of TiO2 with in-situ XRD in different gas[J]. Spectroscopy and Spectral Analysis,2011,31 (4):1133-1137. doi: 10.3964/j.issn.1000-0593(2011)04-1133-05
    [8] 程国峰, 阮音捷, 孙玥, 等. 元素配比对BiFeO3反应烧结相变影响的高温X射线衍射研究[J]. 无机材料学报,2019,34(10):1035-1040

    CHENG Guofeng, RUAN Yinjie, SUN Yue, et al. Stoichiometric ratio on phase transformation in reaction sintering of BiFeO3 ceramics study: a high temperature X-ray diffraction study[J]. Journal of Inorganic Materials,2019,34 (10):1035-1040.
    [9] 赵峥嵘, 曹玉龙, 万响亮, 等. W3Mo4Cr5V6高速钢中碳化物的高温转变行为[J]. 武汉科技大学学报,2022,45(1):1-8

    ZHAO Zhengrong, CAO Yulong, WAN Xiangliang, et al. High-temperature carbide transformation behavior of W3Mo4Cr5V6 high-speed steel[J]. Journal of Wuhan University of Science and Technology,2022,45 (1):1-8.
    [10] 郭建, 王志华, 陶栋梁, 等. 直接沉淀法中不同晶型钛酸锌的X射线粉末衍射研究[J]. 光谱学与光谱分析,2007,27(5):1024-1028 doi: 10.3321/j.issn:1000-0593.2007.05.048

    GUO Jian, WANG Zhihua, TAO Dongliang, et al. Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation[J]. Spectroscopy and Spectral Analysis,2007,27 (5):1024-1028. doi: 10.3321/j.issn:1000-0593.2007.05.048
    [11] 朱桂兰, 何崇智. 新型X射线衍射仪[J]. 钢铁研究学报,2001,13(5):63-66 doi: 10.3321/j.issn:1001-0963.2001.05.015

    ZHU Guilan, HE Chongzhi. New type X-ray diffractometer[J]. Journal of Iron and Steel Research,2001,13 (5):63-66. doi: 10.3321/j.issn:1001-0963.2001.05.015
    [12] 姜其立, 刘俊, 帅麒麟, 等. 一种微束X射线衍射仪及其应用研究[J]. 原子能科学技术,2020,54(5):876-881 doi: 10.7538/yzk.2019.youxian.0581

    JIANG Qili, LIU Jun, SHUAI Qilin, et al. Study of micro X-ray diffractometer and its application[J]. Atomic Energy Science and Technology,2020,54 (5):876-881. doi: 10.7538/yzk.2019.youxian.0581
    [13] 孟凡斌, 崔春翔, 申玉田, 等. X射线衍射仪变温样品室的改进与应用[J]. 现代仪器,2002,8(2):14-16

    MENG Fanbin, CUI Chunxiang, SHEN Yutian, et al. Improvement and application of temperature camera on X-ray diffractometer[J]. Modern Instruments,2002,8 (2):14-16.
    [14] 汪大海, 高远鹏, 罗欢. D8 X射线衍射仪简易变温加热台的研制[J]. 分析测试技术与仪器,2013,19(2):65-70

    WANG Dahai, GAO Yuanpeng, LUO Huan. Development of simple temperature heating station of D8 X-ray diffractometer[J]. Analysis and Testing Technology and Instruments,2013,19 (2):65-70.
    [15] 路大勇, 程崴, 刘巧丽, 等. 国产X射线衍射仪对金属变温测试的温度准确性验证[J]. 分析仪器,2014(3):13-16 doi: 10.3969/j.issn.1001-232x.2014.03.003

    LU Dayong, CHENG Wei, LIU Qiaoli, et al. Confirmation of temperature accuracy of metal XRD measurements at various temperatures via domestic X-ray diffractometer[J]. Analytical Instrumentation,2014 (3):13-16. doi: 10.3969/j.issn.1001-232x.2014.03.003
    [16] 李丹, 林丽萍, 胡准. X射线衍射仪中样品架对物相分析的影响[J]. 实验技术与管理,2021,38(1):36-39

    LI Dan, LIN Liping, HU Zhun. Influence of sample holder on phase analysis in X-ray diffractometer[J]. Experimental Technology and Management,2021,38 (1):36-39.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  105
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-02-10
  • 修回日期:  2023-02-10
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回