Progress of Enzyme Immobilization Strategies and Drug Screening Based on Metal-Organic Framework Materials
-
摘要: 酶抑制剂筛选是药物开发的重要途径之一. 酶的三维结构易受到温度、盐浓度等外界因素的干扰,导致其催化活性和稳定性降低,增加了药物筛选成本. 因此,通过酶与载体之间的相互作用对其进行固定化,提高酶结构稳定性,已成为保持酶活力的重要策略. 基于固定化酶从复杂样品中筛选酶抑制剂也成为了药物研发的热点领域. 近年来,金属有机框架材料(metal-organic frameworks, MOFs)因其具有孔径可调、比表面积大、结构简单、环境稳定等特点,被认为是酶固定化的理想载体,为实现酶抑制剂高效筛选提供了新的解决方案. 总结了以MOFs为载体的酶固定化方法及其在抑制剂筛选和应用的相关研究进展,对MOFs酶固定化和药物筛选的机遇和挑战进行了展望.Abstract: Screening of enzyme inhibitors is one of the important approaches for drug development. The three-dimensional structure of enzymes is susceptible to the interference of external factors such as temperature and salt concentration, leading to a decrease in its catalytic activity and stability and increasing the cost of drug screening. Therefore, immobilization through enzyme-carrier interactions to improve the stability of enzyme structure has become an important strategy to maintain the enzyme activity. Screening enzyme inhibitors from complex samples based on immobilized enzymes has also become a hot field of drug research and development. In recent years, metal-organic frameworks (MOFs) are known as the ideal carrier for enzyme immobilization due to their characteristics of adjustable aperture, large surface area, simple structure, stable environment, and so on, and it provides a novel method to achieve the efficient screening of enzyme inhibitors. The method of enzyme immobilization using MOFs as the carrier, the research progress of inhibitor screening and application were summarized. The opportunities and challenges of MOFs enzyme immobilization and drug screening were prospected.
-
Key words:
- MOFs /
- enzyme immobilization /
- enzyme inhibitors /
- drug screening
-
图 3 (a) PmHS2@Mg-BMOM微反应器的合成示意图及其在肝素二糖、三糖和多糖合成中的应用[22](ICA, Imidazole-2-carboxaldehyde),(b) 通过Y-支架交联多种酶网络并在ZIF-8中固定的示意图[30]
Figure 3. (a) Schematics of synthesizing a PmHS2@Mg-BMOM microreactor and its applications for synthesis of heparosan disaccharide, trisaccharide, and polysaccharide[22](ICA, Imidazole-2-carboxaldehyde), (b) schematic for cross-linking multiple enzymes network by Y-scaffold and entrapment in zeolitic imidazolate framework (ZIF-8)[30]
图 6 (a) 基于双功能杂化酶催化MOFs反应器的比色传感平台示意图[64](TMB, 3, 3', 5, 5'-Tetramethylbenzidine dihydrochloride),(b) 基于GAA@Cu-MOF和IrO2/MnO2纳米复合材料的GAA抑制剂筛选传感平台示意图[87]
Figure 6. (a) Schematic illustration of colorimetric sensing platform based on hybrid enzyme-catalytic MOF reactor[64](TMB, 3, 3', 5, 5'-Tetramethylbenzidine dihydrochloride), (b) schematic illustration of sensing platform for GAA inhibitor screening based on GAA@Cu-MOF and IrO2/MnO2 nanocomposite[87]
表 1 基于不同方法制备酶-MOFs复合材料的性能总结
Table 1. Summary of performances of enzyme-MOFs composites prepared based on different methods
MOFs 酶 固定方法 对酶活力的影响 性能 参考文献 MIL-88B-NH2(Cr) 胰蛋白酶 共价 — 优越的蛋白水解性能 [23] NH2-MIL53(Al)、NH2-MIL101(Cr) 葡萄糖氧化酶 共价 抑制 高选择性、低检测限 [19] ILs/Fe3O4@MOF 脂肪酶 共价 提升 催化活性高、稳定性好 [24] Fe3O4-COOH@UiO-66-NH2 猪胰脂肪酶 交联 — 较高的负载量和固定化酶活性 [25] Fe3O4@ZIF-67 α-葡萄糖苷酶 交联 抑制 高负载量 [20] Cu-BTC 枯草芽孢杆菌脂肪酶 表面吸附 提升 较高的催化活性、优良的可重复使用性 [21] HP-DUT-5 葡萄糖氧化酶、尿酸酶 表面吸附 — 稳定性好、特异性强 [26] UiO-66-NH2 乙酰胆碱酯酶 表面吸附 — 较高的负载量 [27] Cu-MOF β-葡萄糖苷酶 共沉淀法 — 优异的包封效率和酸性稳定性 [28] MTV-ZIF-8 脂肪酶 仿生矿化 提升 较高的催化活性 [5] UiO-66-NH2(30) 漆酶 表面吸附、扩散 提升 负载量高、稳定性好 [29] BMOMs 糖基转移酶 微反应器 提升 优异的催化活性 [22] DNA/ZIF-8 辣根过氧化物酶、葡萄糖氧化酶 原位包埋 提升 催化效率高 [30] —:未注明 表 2 基于MOFs的固定化酶在抑制剂筛选中的应用
Table 2. Application of immobilized enzyme based on MOFs in inhibitor screening
MOFs 酶 固定方法 对酶活力的影响 检测技术 应用 参考文献 Fe3O4@CS@ZIF-8 α-葡萄糖苷酶 原位包埋 — 毛细管电泳 14种中药中α-葡萄糖苷酶抑制剂筛选 [62] MnO2-ZIF-67 乙酰胆碱酯酶 表面吸附 — 毛细管电泳 大叶旋覆花中AChE抑制剂筛选 [65] UiO-66-NH2 猪胰脂肪酶 交联、共价结合 提升 高效液相色谱-四级杆-飞行时间串联质谱 夏枯草中脂肪酶抑制剂筛选 [63] Fe3O4-COOH@UiO-66-NH2 猪胰脂肪酶 交联 抑制 超高效液相色谱-四级杆-飞行时间串联质谱 黄岑中分离鉴定脂肪酶抑制剂 [25] ZIF-90 α-葡萄糖苷酶 共价结合 — 高效液相色谱 淮山药和地黄等多种植物中筛选α-葡萄糖苷酶抑制剂 [66] Fe3O4@ZIF-67 α-葡萄糖苷酶 交联 抑制 高效液相色谱 信阳毛尖茶中筛选α-葡萄糖苷酶抑制剂 [20] Cu-MOF α-葡萄糖苷酶 原位包埋 提升 比色传感 齐墩果酸衍生物中筛选潜在的抗糖尿病药物 [64] Au/Cu-MOFs DNA甲基转移酶 共价结合 — 电化学检测法 检测酶活性并研究抑制剂筛选可行性 [67] —:未注明 -
[1] Alcántara A R, Domínguez de María P, Littlechild J A, et al. Biocatalysis as key to sustainable industrial chemistry[J]. ChemSusChem,2022,15 (9):e202102709. [2] Copeland R A, Harpel M R, Tummino P J. Targeting enzyme inhibitors in drug discovery[J]. Expert Opinion on Therapeutic Targets,2007,11 (7):967-978. doi: 10.1517/14728222.11.7.967 [3] Liu L L, Shi S Y, Chen X Q, et al. Analysis of tyrosinase binders from Glycyrrhiza uralensis root: evaluation and comparison of tyrosinase immobilized magnetic fishing-HPLC and reverse ultrafiltration-HPLC[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2013,932 :19-25. doi: 10.1016/j.jchromb.2013.06.002 [4] Cardoso C L, de Moraes M C, Cass Q B. Imobilização de enzimas em suportes cromatográficos: uma ferramenta na busca por substâncias bioativas[J]. Química Nova,2009,32 (1):175-187. [5] Li Y M, Yuan J, Ren H, et al. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks[J]. Journal of the American Chemical Society,2021,143 (37):15378-15390. doi: 10.1021/jacs.1c07107 [6] Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow[J]. Nature,2001,409 (6817):258-268. doi: 10.1038/35051736 [7] Wu J, Wang X Y, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)[J]. Chemical Society Reviews,2019,48 (4):1004-1076. doi: 10.1039/C8CS00457A [8] Wang Q Q, Wei H, Zhang Z Q, et al. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trends in Analytical Chemistry,2018,105 :218-224. doi: 10.1016/j.trac.2018.05.012 [9] Nadar S S, Vaidya L, Rathod V K. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization[J]. International Journal of Biological Macromolecules,2020,149 :861-876. doi: 10.1016/j.ijbiomac.2020.01.240 [10] 李宏强, 王宏博, 席斌, 等. 金属有机骨架及其复合材料在食品安全检测中的应用[J]. 理化检验-化学分册,2022,58(5):612-620LI Hongqiang, WANG Hongbo, XI Bin, et al. Application of metal-organic framework materials and their composites in food safety detection[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis),2022,58 (5):612-620. [11] Drout R J, Robison L, Farha O K. Catalytic applications of enzymes encapsulated in metal-organic frameworks[J]. Coordination Chemistry Reviews,2019,381 :151-160. doi: 10.1016/j.ccr.2018.11.009 [12] Lian X Z, Fang Y, Joseph E, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews,2017,46 (11):3386-3401. doi: 10.1039/C7CS00058H [13] Feng Y M, Xu Y, Liu S C, et al. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing[J]. Coordination Chemistry Reviews,2022,459 :214414. doi: 10.1016/j.ccr.2022.214414 [14] Ye N R, Kou X X, Shen J, et al. Metal-organic frameworks: a new platform for enzyme immobilization[J]. ChemBioChem,2020,21 (18):2585-2590. doi: 10.1002/cbic.202000095 [15] Zhu Y T, Ren X Y, Liu Y M, et al. Covalent immobili-zation of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays[J]. Materials Science and Engineering:C,2014,38 :278-285. doi: 10.1016/j.msec.2014.02.011 [16] Sahutoglu A S, Akgul C. Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates[J]. Chemical Papers,2015,69 (3):433-439. [17] Junior J C Q, Ferrarezi A L, Borges J P, et al. Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism[J]. Bioprocess and Biosystems Engineering,2016,39 (12):1933-1943. doi: 10.1007/s00449-016-1667-9 [18] Zdarta J, Meyer A, Jesionowski T, et al. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility[J]. Catalysts,2018,8 (2):92. doi: 10.3390/catal8020092 [19] Tudisco C, Zolubas G, Seoane B, et al. Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification[J]. RSC Advances,2016,6 (109):108051-108055. doi: 10.1039/C6RA19976C [20] Wu X R, Qiu B B, Chen Y N, et al. Online coupling Fe3O4@ZIF-67@α-glucosidase biomicroreactor with high performance liquid chromatography for rapid screening of α-glucosidase inhibitors in tea and their inhibitory activity research[J]. Journal of Chromatography B,2020,1159 :122398. doi: 10.1016/j.jchromb.2020.122398 [21] Cao Y, Wu Z F, Wang T, et al. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification[J]. Dalton Transactions,2016,45 (16):6998-7003. doi: 10.1039/C6DT00677A [22] Qiao M, Ji Y, Linhardt R J, et al. Fabricating bimetal organic material capsules with a commodious micro-environment and synergistic effect for glycosyltransferase[J]. ACS Applied Materials & Interfaces,2022,14 (22):26034-26043. [23] Shih Y H, Lo S H, Yang N S, et al. Trypsin-immobi-lized metal-organic framework as a biocatalyst in proteomics analysis[J]. ChemPlusChem,2012,77 (11):982-986. doi: 10.1002/cplu.201200186 [24] Suo H B, Geng H N, Zhang L, et al. Covalent immobili-zation of lipase on an ionic liquid-functionalized magnetic Cu-based metal-organic framework with boosted catalytic performance in flavor ester synthesis[J]. Journal of Materials Chemistry B,2023,11 (6):1302-1311. doi: 10.1039/D2TB02246J [25] Xu J F, Cao P K, Fan Z Y, et al. Rapid screening of lipase inhibitors in scutellaria baicalensis by using porcine pancreatic lipase immobilized on magnetic core-shell metal-organic frameworks[J]. Molecules,2022,27 (11):3475. doi: 10.3390/molecules27113475 [26] Liu X, Qi W, Wang Y F, et al. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks[J]. Nanoscale,2017,9 (44):17561-17570. doi: 10.1039/C7NR06019J [27] Liu R, Yi G Y, Ji B A, et al. Metal-organic frameworks-based immobilized enzyme microreactors integrated with capillary electrochromatography for high-efficiency enzyme assay[J]. Analytical Chemistry,2022,94 (17):6540-6547. doi: 10.1021/acs.analchem.1c05586 [28] Wang L, Zhi W J, Wan J, et al. Recyclable β-glucosidase by one-pot encapsulation with Cu-MOFs for enhanced hydrolysis of cellulose to glucose[J]. ACS Sustainable Chemistry & Engineering,2019,7 (3):3339-3348. [29] Liu C, Zhang X Y, Zhou Y, et al. A reusable and leakage-proof immobilized laccase@UiO-66-NH2(30) for the efficient biodegradation of rifampicin and lincomycin[J]. Biochemical Engineering Journal,2023,194 :108897. doi: 10.1016/j.bej.2023.108897 [30] Song J Y, He W T, Shen H, et al. Construction of multiple enzyme metal-organic frameworks bio-catalyst via DNA scaffold: a promising strategy for enzyme encapsulation[J]. Chemical Engineering Journal,2019,363 :174-182. doi: 10.1016/j.cej.2019.01.138 [31] Singh O, Lee P Y, Matysiak S, et al. Dual mechanism of ionic liquid-induced protein unfolding[J]. Physical Chemistry Chemical Physics,2020,22 (35):19779-19786. doi: 10.1039/D0CP03138K [32] Akkas T, Zakharyuta A, Taralp A, et al. Cross-linked enzyme lyophilisates (CLELs) of urease: a new method to immobilize ureases[J]. Enzyme and Microbial Technology,2020,132 :109390. doi: 10.1016/j.enzmictec.2019.109390 [33] Imam H T, Marr P C, Marr A C. Enzyme entrapment, biocatalyst immobilization without covalent attachment[J]. Green Chemistry,2021,23 (14):4980-5005. doi: 10.1039/D1GC01852C [34] 周梓昕. 基于金属有机骨架材料的酶固定化方法研究及其分析应用[D]. 北京: 北京化工大学, 2022ZHOU Zixin. Fabrication and analytical application of immobilized enzymes based on metal-organic frameworks[D]. Beijing University of Chemical Technology, 2022. [35] Cui J D, Ren S Z, Sun B T, et al. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: current development and future challenges[J]. Coordination Chemistry Reviews,2018,370 :22-41. doi: 10.1016/j.ccr.2018.05.004 [36] Trindade Ximenes I A, de Oliveira P C O, Wegermann C A, et al. Magnetic particles for enzyme immobilization: a versatile support for ligand screening[J]. Journal of Pharmaceutical and Biomedical Analysis,2021,204 :114286. doi: 10.1016/j.jpba.2021.114286 [37] Liu D M, Chen J, Shi Y P. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability[J]. Analytica Chimica Acta,2018,1006 :90-98. doi: 10.1016/j.aca.2017.12.022 [38] Jiang J B, Yu Y J, Wang L P, et al. Enzyme immobi-lized on polyamidoamine-coated magnetic microspheres for α-glucosidase inhibitors screening from Radix Paeoniae Rubra extracts accompanied with molecular modeling[J]. Talanta,2019,195 :127-136. doi: 10.1016/j.talanta.2018.11.009 [39] Liu D M, Chen J, Shi Y P. Advances on methods and easy separated support materials for enzymes immobi-lization[J]. TrAC Trends in Analytical Chemistry,2018,102 :332-342. doi: 10.1016/j.trac.2018.03.011 [40] Gascón V, Jiménez M B, Blanco R M, et al. Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization[J]. Catalysis Today,2018,304 :119-126. doi: 10.1016/j.cattod.2017.10.022 [41] Gkaniatsou E, Sicard C, Ricoux R, et al. Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection[J]. Materials Horizons,2017,4 (1):55-63. doi: 10.1039/C6MH00312E [42] Asadi V, Kardanpour R, Tangestaninejad S, et al. Novel bovine carbonic anhydrase encapsulated in a metal-organic framework: a new platform for biomimetic sequestration of CO2[J]. RSC Advances,2019,9 (49):28460-28469. doi: 10.1039/C9RA04603H [43] Ghasemi S, Yousefi M, Nikseresht A, et al. Covalent binding and in situ immobilization of lipases on a flexible nanoporous material[J]. Process Biochemistry,2021,102 :92-101. doi: 10.1016/j.procbio.2020.12.013 [44] Kempahanumakkagari S, Kumar V, Samaddar P, et al. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform[J]. Biotechnology Advances,2018,36 (2):467-481. doi: 10.1016/j.biotechadv.2018.01.014 [45] Pan Y X, Li Q B, Li H, et al. A general Ca-MOM platform with enhanced acid-base stability for enzyme biocatalysis[J]. Chem Catalysis,2021,1 (1):146-161. doi: 10.1016/j.checat.2021.03.001 [46] Zhang Y, Ma S Q. Controllable immobilization of enzymes in metal-organic frameworks for biocatalysis[J]. Chem Catalysis,2021,1 (1):20-22. doi: 10.1016/j.checat.2021.04.010 [47] Gascón V, Carucci C, Jiménez M B, et al. Rapid in situ immobilization of enzymes in metal-organic framework supports under mild conditions[J]. ChemCatChem,2017,9 (7):1182-1186. doi: 10.1002/cctc.201601342 [48] Gascón V, Castro-Miguel E, Díaz-García M, et al. In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts[J]. Journal of Chemical Technology & Biotechnology,2017,92 (10):2583-2593. [49] Chen G S, Huang S M, Kou X X, et al. Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement[J]. Angewandte Chemie International Edition,2020,59 (33):13947-13954. doi: 10.1002/anie.202005529 [50] Chen Y J, Jiménez-Ángeles F, Qiao B F, et al. Insights into the enhanced catalytic activity of cytochrome c when encapsulated in a metal-organic framework[J]. Journal of the American Chemical Society,2020,142 (43):18576-18582. doi: 10.1021/jacs.0c07870 [51] Navarro-Sanchez J, Almora-Barrios N, Lerma-Berlanga B, et al. Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions[J]. Chemical Science,2019,10 (14):4082-4088. [52] Chen W H, Vázquez-González M, Zoabi A, et al. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles[J]. Nature Catalysis,2018,1 (9):689-695. doi: 10.1038/s41929-018-0117-2 [53] Liang J Y, Liang K. Biocatalytic metal-organic frameworks: prospects beyond bioprotective porous matrices[J]. Advanced Functional Materials,2020,30 (27):2001648. doi: 10.1002/adfm.202001648 [54] Liao F S, Lo W S, Hsu Y S, et al. Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach[J]. Journal of the American Chemical Society,2017,139 (19):6530-6533. doi: 10.1021/jacs.7b01794 [55] Liang W B, Xu H S, Carraro F, et al. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks[J]. Journal of the American Chemical Society,2019,141 (6):2348-2355. doi: 10.1021/jacs.8b10302 [56] Yang X G, Zhang J R, Tian X K, et al. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions[J]. Angewandte Chemie International Edition,2023,62 (7):e202216699. [57] Jing Y Q, Li J X, Zhang X W, et al. Catalase-integrated metal-organic framework with synergetic catalytic activity for colorimetric sensing[J]. Environmental Research,2022,207 :112147. doi: 10.1016/j.envres.2021.112147 [58] Chen G S, Huang S M, Kou X X, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks[J]. Angewandte Chemie International Edition,2019,58 (5):1463-1467. doi: 10.1002/anie.201813060 [59] Maddigan N K, Tarzia A, Huang D M, et al. Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8[J]. Chemical Science,2018,9 (18):4217-4223. doi: 10.1039/C8SC00825F [60] Liang W B, Ricco R, Maddigan N K, et al. Control of structure topology and spatial distribution of biomacromolecules in Protein@ZIF-8 biocomposites[J]. Chemistry of Materials,2018,30 (3):1069-1077. doi: 10.1021/acs.chemmater.7b04977 [61] Wang S Z, Wang J Y, Yao Y, et al. A mild one-pot self-assembly approach to encapsulating enzymes into metal-organic framework with Asp-boosted enzymatic performance for clean production[J]. Journal of Cleaner Production,2023,401 :136710. doi: 10.1016/j.jclepro.2023.136710 [62] Wan G Z, Ma X H, Jin L, et al. α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines[J]. Colloids and Surfaces B: Biointerfaces,2021,205 :111847. doi: 10.1016/j.colsurfb.2021.111847 [63] Chen X L, Xue S, Lin Y L, et al. Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: a new platform for efficient ligand discovery from natural herbs[J]. Analytica Chimica Acta,2020,1099 :94-102. doi: 10.1016/j.aca.2019.11.042 [64] Zhong Y Y, Yu L J, He Q Y, et al. Bifunctional hybrid enzyme-catalytic metal organic framework reactors for α-glucosidase inhibitor screening[J]. ACS Applied Materials & Interfaces,2019,11 (36):32769-32777. [65] Liu J, Ma R, Ha W, et al. An MnO2-ZIF-67 immobilized acetylcholinesterase method for acetylcholinesterase activity assay and inhibitor screening from Inula macrophylla based on capillary electrophoresis[J]. Talanta,2023,253 :124025. doi: 10.1016/j.talanta.2022.124025 [66] Qiu B B, Shi Y Q, Yan L Y, et al. Development of an on-line immobilized α-glucosidase microreactor coupled to liquid chromatography for screening of α-glucosidase inhibitors[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,180 :113047. doi: 10.1016/j.jpba.2019.113047 [67] Chen Y, Meng X Z, Gu H W, et al. A dual-response biosensor for electrochemical and glucometer detection of DNA methyltransferase activity based on functionalized metal-organic framework amplification[J]. Biosensors and Bioelectronics,2019,134 :117-122. doi: 10.1016/j.bios.2019.03.051 [68] Iqbal J, Iqbal S, Müller C E. Advances in immobilized enzyme microbioreactors in capillary electro-phoresis[J]. Analyst,2013,138 (11):3104-3116. doi: 10.1039/c3an00031a [69] Tang L L, Zhang W P, Zhao H Y, et al. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis[J]. Journal of Separation Science,2015,38 (16):2887-2892. doi: 10.1002/jssc.201500371 [70] Wu Z Y, Zhang H, Li Q Q, et al. Capillary electrophoresis-based online immobilized enzyme reactor for beta-glucosidase kinetics assays and inhibitors screening[J]. Journal of Chromatography B,2019,1110-1111 :67-73. doi: 10.1016/j.jchromb.2019.02.002 [71] Krylova S M, Okhonin V, Krylov S N. Transverse diffusion of laminar flow profiles-a generic method for mixing reactants in capillary microreactor[J]. Journal of Separation Science,2009,32 (5-6):742-756. doi: 10.1002/jssc.200800671 [72] Li X J, Yin Z R, Cui X J, et al. Capillary electrophoresis-integrated immobilized enzyme microreactor with graphene oxide as support: Immobilization of negatively charged L-lactate dehydrogenase via hydrophobic interactions[J]. Electrophoresis,2020,41 (3-4):175-182. doi: 10.1002/elps.201900334 [73] Wu Z Y, Zhang H, Yang Y Y, et al. An online dual-enzyme co-immobilized microreactor based on capillary electrophoresis for enzyme kinetics assays and screening of dual-target inhibitors against thrombin and factor Xa[J]. Journal of Chromatography A,2020,1619 :460948. doi: 10.1016/j.chroma.2020.460948 [74] Ma M X, Zhang J, Li P P, et al. Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography[J]. Microchimica Acta,2021,188 (6):1-11. [75] Sun Y Y, Shi J F, Zhang S H, et al. Hierarchically porous and water-tolerant metal-organic frameworks for enzyme encapsulation[J]. Industrial & Engineering Chemistry Research,2019,58 (28):12835-12844. [76] Nadar S S, Rathod V K. Magnetic-metal organic framework (magnetic-MOF): a novel platform for enzyme immobilization and nanozyme applications[J]. International Journal of Biological Macromolecules,2018,120 :2293-2302. doi: 10.1016/j.ijbiomac.2018.08.126 [77] Nadar S S, Varadan N O, Suresh S, et al. Recent progress in nanostructured magnetic framework composites (MFCs): Synthesis and applications[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,91 :653-677. doi: 10.1016/j.jtice.2018.06.029 [78] Hou W C, Xia J L, Liu C M, et al. Development of a method to screen and isolate bioactive constituents from Stellera chamaejasme by ultrafiltration and liquid chromatography combined with semi-preparative high-performance liquid chromatography and high-speed counter current chromatography[J]. Journal of Separation Science,2019,42 (22):3421-3431. doi: 10.1002/jssc.201900772 [79] Zhai R, Yuan Y F, Jiao F L, et al. Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics[J]. Analytica Chimica Acta,2017,994 :19-28. doi: 10.1016/j.aca.2017.08.048 [80] Wang F, Liu M X, Niu X K, et al. Dextran-assisted ultrasonic exfoliation of two-dimensional metal-organic frameworks to evaluate acetylcholinesterase activity and inhibitor screening[J]. Analytica Chimica Acta,2023,1243 :340815. doi: 10.1016/j.aca.2023.340815 [81] Zhao Y, Hu J J, Bai X L, et al. Fast screening of tyrosinase inhibitors from traditional Chinese medicinal plants by ligand fishing in combination with in situ fluorescent assay[J]. Analytical and Bioanalytical Chemistry,2022,414 (6):2265-2273. doi: 10.1007/s00216-021-03864-w [82] Mu J, Xu W H, Huang Z Z, et al. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication[J]. Microchemical Journal,2023,189 :108533. doi: 10.1016/j.microc.2023.108533 [83] Qi S L, Guan H D, Deng G, et al. Rapid, reliable, and sensitive detection of adenosine deaminase activity by UHPLC-Q-Orbitrap HRMS and its application to inhibitory activity evaluation of traditional Chinese medicines[J]. Journal of Pharmaceutical and Biomedical Analysis,2018,153 :175-181. doi: 10.1016/j.jpba.2018.02.045 [84] Song W L, Yin W S, Zhang Z H, et al. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimickingcatalyst for amperometric determination of the activity of T4 polynucleotide kinase[J]. Microchimica Acta,2019,186 (3):149. doi: 10.1007/s00604-019-3269-0 [85] Salehabadi H, Khajeh K, Dabirmanesh B, et al. Surface plasmon resonance based biosensor for discovery of new matrix metalloproteinase-9 inhibitors[J]. Sensors and Actuators B:Chemical,2018,263 :143-150. doi: 10.1016/j.snb.2018.02.073 [86] Zhang X L, Li G L, Wu D, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy[J]. Biosensors and Bioelectronics,2019,137 :178-198. doi: 10.1016/j.bios.2019.04.061 [87] Zhong Y Y, Li Q L, Lu M L, et al. A colorimetric sensing strategy based on enzyme@metal-organic framework and oxidase-like IrO2/MnO2 nanocomposite for α-glucosidase inhibitor screening[J]. Microchimica Acta,2020,187 (12):675. doi: 10.1007/s00604-020-04660-6 [88] 江兰, 杭永正, 邹立娜, 等. 基于金属有机骨架材料的电化学DNA传感器在分析检测领域的应用进展[J]. 理化检验-化学分册,2022,58(9):1109-1116JIANG Lan, HANG Yongzheng, ZOU Lina, et al. Application progress of electrochemical DNA sensors based on metal-organic framework materials in analysis and detection field[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis),2022,58 (9):1109-1116. [89] Liang J Y, Bin Zulkifli M Y, Yong J, et al. Locking the ultrasound-induced active conformation of metalloenzymes in metal-organic frameworks[J]. Journal of the American Chemical Society,2022,144 (39):17865-17875. doi: 10.1021/jacs.2c06471 [90] Bolivar J M, Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: advances in methodology and the quest for a single-molecule perspective[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2020,1868 (2):140333. doi: 10.1016/j.bbapap.2019.140333 -