Simulation Study on Salt Migration Process of Fresco Floor Layer in Dunhuang Mogao Grottoes
-
摘要: 采用莫高窟壁画的地仗层制作材料与工艺制备了不同盐分含量及组成的模拟土柱,并在柱体不同位置加入氧化铝小球作为盐分迁移的探针,以考察硫酸钠与氯化钠两种盐分在土柱内部的分布、迁移及在柱体表面的结晶行为. 为了探查壁画的地仗层组分差异和孔体性能的不同对盐分迁移与结晶过程的影响,对放置在不同位置的探针小球和同一位置土体进行采样,利用比表面积/孔隙度分析(BET)和扫描电子显微镜-能谱(SEM-EDS)等方法考察不同孔结构及性能对水盐运移与分布的影响,及不同盐分在模拟柱表层的探针小球和土体表面结晶表现的差异. 离子色谱(IC)法用来分析在模拟柱的不同高度处所含盐离子浓度,以考察其在柱体中的迁移性能和分布特征,进而得到壁画地仗层的组分不同对水盐运移及盐分结晶的影响. 结果表明:水盐运移介质的孔道性能与结构对盐害的产生与发展有较大影响,当地仗层中麦草含量较多时有利于水盐溶液向地仗表层迁移,而细麻的存在增加了土体中介孔数量,两者均促使了盐分在更接近地仗表层的位置成核结晶,对表层壁画的存在造成威胁. 盐分的结晶表现与盐害机理也有所不同,硫酸钠更易在模拟土柱表层土质中结晶,而氯化钠则主要在氧化铝小球表层结晶,当两种盐分同时存在时,主要表现为氯化钠在土柱表面氧化铝小球的结晶,土体表层的盐分结晶反而减弱.Abstract: The simulated earthen columns with different salt contents and compositions were prepared with the aid of materials and techniques used to produce the fresco floor layer of the Mogao Caves murals. The alumina spheres were placed at different locations of the column as the salt migration probes to investigate the distribution and migration of sodium sulfate and sodium chloride and their crystallization behavior on the surface of the column. In order to investigate the effect of differences in components and pore properties of the fresco floor layer of the Mogao Caves murals on salt migration and crystallization processes, probe pellets placed at different locations and soil at the same location were sampled. The effects of different pore structures and properties on water-salt transport and distribution, and the differences in the crystalline behavior of probe pellets and soil surfaces on the surface of the simulated earthen columns for different salts were investigated by Brunner-Emmet-Teller measurements (BET), scanning electron microscopy-energy spectroscopy (SEM-EDS), and other methods. The ion chromatographic (IC) method was used to analyze the salt ion concentration at different heights of the simulated earthen column to detect its migration properties and distribution characteristics, so as to obtain the effect of different components of the fresco floor layer of the Mogao Caves murals on water-salt transport and salt crystallization. The results showed that the pore properties and structure of the water-salt transport medium have a great effect on the generation and development of the salt damage. The high content of wheatgrass in the fresco layer is conducive to the migration of water and salt solution to the surface of the fresco layer, while the presence of fine linen enables the increases of the number of soil mesoporous in the soil, both of which promote the nucleation and crystallization of the salt closer to the surface of the fresco layer, posing a threat to the existence of surface murals. The crystallization behavior of salts and mechanism of salt damage are also different. Sodium sulfate is more likely to crystallize on the surface soil layer of the simulated earthen column, while sodium chloride mainly crystallizes on the surface layer of alumina pellets. When the two salts are exist simultaneously, the crystallization of sodium chloride mainly occurs on the surface of alumina pellets on the simulated earthen column, but the crystallization of salt on the surface layer of the soil is weakened.
-
Key words:
- Mogao Caves /
- murals /
- earthen site soil /
- migration of water and salt solution /
- sodium sulfate /
- sodium chloride /
- salt damage
-
表 1 模拟土柱各组分及盐分含量
Table 1. Composition and salt content of simulated earthen columns
/g 土 沙 水 细麻 粗麦 Na2SO4 NaCl 序号 质量 序号 质量 A 360 180 150 0 0 ① 54 ① 0 ② 0 ② 54 ③ 27 ③ 27 B 360 180 150 15 0 ① 54 ① 0 ② 0 ② 54 ③ 27 ③ 27 C 360 180 150 0 15 ① 54 ① 0 ② 0 ② 54 ③ 27 ③ 27 D 360 180 150 7.5 7.5 ① 54 ① 0 ② 0 ② 54 ③ 27 ③ 27 表 2 土柱土体样品的XRF表征结果
Table 2. XRF analysis of soil in simulated earthen column
/% Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 所归属可能矿物 土 2.325 7.936 13.553 54.563 2.680 12.136 5.504 伊利石、绿泥石 细沙 3.624 4.335 9.751 67.744 1.798 9.475 2.596 石英、长石、方解石 表 3 样品的结构表征分析
Table 3. Structural analysis of pellets and soil in simulated earthen column
Sample SBET/
(m2/g)Pore volume/
(cm3/g)Average pore
size/nm空白小球 160.16 0.471 11.35 含Na2SO4小球 108.10 0.337 11.26 含NaCl小球 116.41 0.455 13.84 含Na2SO4+NaCl小球 106.40 0.359 12.94 土柱模拟土 6.03 0.022 11.13 土柱模拟土(含麻) 5.78 0.020 15.01 土柱模拟土(含麻+麦) 4.65 0.019 16.78 -
[1] Granneman S J C, Lubelli B, van Hees R P J. Mitigating salt damage in building materials by the use of crystallization modifiers-a review and outlook[J]. Journal of Cultural Heritage,2019,40 :183-194. doi: 10.1016/j.culher.2019.05.004 [2] 杨善龙. 中国西北地区夯土遗址盐害特征及防治研究[D]. 西安: 西北大学, 2018YANG Shanlong. The salt damage characteristics and prevention of rammed earthen sites in the northwest of China[D]. Xi'an: Northwest University, 2018. [3] 张良帅, 陈家昌, 贺思予. 土遗址盐害机理与抑制研究综述[J]. 敦煌研究,2020(3):129-136ZHANG Liangshuai, CHEN Jiachang, HE Siyu. A summary of the research on the cause and control of salt damage at earthen sites[J]. Dunhuang Research,2020 (3):129-136. [4] 张亚旭, 于宗仁, 王丽琴, 等. 莫高窟第196窟壁画可溶盐分析及相关问题研究[J]. 敦煌研究,2021(1):148-155ZHANG Yaxu, YU Zongren, WANG Liqin, et al. A study on the soluble salts used in the murals of mogao cave 196[J]. Dunhuang Research,2021 (1):148-155. [5] 吕功煊, 张尚新, 钱玲, 等. 秦始皇帝陵土遗址可溶盐特征与脱盐试探[J]. 自然杂志,2015,37(5):341-347LV Gongxuan, ZHANG Shangxin, QIAN Ling, et al. The characteristics of the main dissolved salt and the desalination experiments in Terra-Cotta Warriors and Horses of Emperor Qin Shihuang Mausolesum Site[J]. Chinese Journal of Nature,2015,37 (5):341-347. [6] 钱玲, 夏寅, 胡红岩, 等. 三门峡虢季墓遗址盐害分析与调查[J]. 分析测试技术与仪器,2016,22(2):80-89QIAN Ling, XIA Yin, HU Hongyan, et al. Investigation and analysis of disastrous soluble salts in Sanmenxia Guo ji tomb sites[J]. Analysis and Testing Technology and Instruments,2016,22 (2):80-89. [7] 汪怡珂, 罗昔联, 陈思宇, 等. 文物的赋存环境及其预防性保护问题[J]. 文物保护与考古科学,2020,32(2):95-102WANG Yike, LUO Xilian, CHEN Siyu, et al. The environment of cultural relics and relevant preventive conservation problems[J]. Sciences of Conservation and Archaeology,2020,32 (2):95-102. [8] Zhang Y, Ye W M, Chen B, et al. Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, northwest China[J]. Applied Clay Science,2016,124-125 :1-10. doi: 10.1016/j.clay.2016.01.047 [9] 贺翔. 彩绘文物次生病害与典型保护材料失效机理研究[D]. 杭州: 浙江大学, 2019HE Xiang. Mechanisms of secondary diseases of polychrome cultural heritages and failure of typical conservation materials[D]. Hangzhou: Zhejiang University, 2019. [10] 刘成, 孙文静, 黄继忠, 等. 云冈石窟顶部土层水盐分布特征研究[J]. 文物保护与考古科学,2020,32(3):70-81LIU Cheng, SUN Wenjing, HUANG Jizhong, et al. Study of water and salt distribution characteristics in the top soil layer of Yungang Grottoes[J]. Sciences of Conservation and Archaeology,2020,32 (3):70-81. [11] 严绍军, 方云, 刘俊红, 等. 可溶盐对云冈石窟砂岩劣化试验及模型建立[J]. 岩土力学,2013,34(12):3410-3416 doi: 10.16285/j.rsm.2013.12.001YAN Shaojun, FANG Yun, LIU Junhong, et al. Deterioration experiment with soluble salt on sandstone of Yungang grottoes and its model creation[J]. Rock and Soil Mechanics,2013,34 (12):3410-3416. doi: 10.16285/j.rsm.2013.12.001 [12] Shen Y X, Chen W W, Kuang J, et al. Effect of salts on earthen materials deterioration after humidity cycling[J]. Journal of Central South University,2017,24 (4):796-806. doi: 10.1007/s11771-017-3482-0 [13] Pu T B, Chen W W, Du Y M, et al. Snowfall-related deterioration behavior of the Ming Great Wall in the eastern Qinghai-Tibet Plateau[J]. Natural Hazards,2016,84 (3):1539-1550. doi: 10.1007/s11069-016-2497-4 [14] 陈港泉. 敦煌莫高窟壁画盐害分析及治理研究[D]. 兰州: 兰州大学, 2016CHEN Gangquan. Study on salting damage analysis and treatment of wall paintings at mogao grottoes, Dunhuang[D]. Lanzhou: Lanzhou University, 2016. [15] 李凤洁. 敦煌莫高窟地仗层吸湿特征及机理试验研究[D]. 兰州: 兰州大学, 2020LI Fengjie. Experimental study on the moisture adsorption characteristics and mechanism of the earthen plaster in the mogao grottoes of Dunhuang[D]. Lanzhou: Lanzhou University, 2020. [16] 刘洪丽, 王旭东, 张明泉, 等. 莫高窟壁画劣化与降雨入渗关系的试验研究[J]. 兰州大学学报(自然科学版),2019,55(5):661-666 doi: 10.13885/j.issn.0455-2059.2019.05.014LIU Hongli, WANG Xudong, ZHANG Mingquan, et al. Correlations between precipitation and propagation of mural degeneration in Mogao Grottoes, Dunhuang[J]. Journal of Lanzhou University (Natural Sciences),2019,55 (5):661-666. doi: 10.13885/j.issn.0455-2059.2019.05.014 [17] 靳治良, 刘端端, 张永科, 等. 盐分在文物本体中的迁移及毁损机理[J]. 文物保护与考古科学,2017,29(5):102-116JIN Zhiliang, LIU Duanduan, ZHANG Yongke, et al. Salt migrations and damage mechanism in cultural heritage objects[J]. Sciences of Conservation and Archaeology,2017,29 (5):102-116. [18] 钱玲, 夏寅, 胡红岩, 等. 熊家冢含盐情况调查与分析[J]. 敦煌研究,2017(5):132-140QIAN Ling, XIA Yin, HU Hongyan, et al. A study on the soluble salt contents and occurrence state in the soil of the earthen site at Xiongjiazong[J]. Dunhuang Research,2017 (5):132-140. [19] 钱玲, 夏寅, 胡红岩, 等. 应用于土遗址文物脱盐的高分子材料[J]. 化学研究与应用,2014,26(12):1839-1845 doi: 10.3969/j.issn.1004-1656.2014.12.003QIAN Ling, XIA Yin, HU Hongyan, et al. Research progress of salt-resistant superabsorbent polymer for desalination to earthen ruins[J]. Chemical Research and Application,2014,26 (12):1839-1845. doi: 10.3969/j.issn.1004-1656.2014.12.003 [20] 钱玲, 张尚欣, 胡红岩, 等. 老山汉墓土遗址盐分调查与分布规律探索[J]. 分析测试技术与仪器,2016,22(4):209-216QIAN Ling, ZHANG Shangxin, HU Hongyan, et al. Survey and exploration of salts species and distribution in Laoshan Han tomb earthen sites[J]. Analysis and Testing Technology and Instruments,2016,22 (4):209-216. [21] Zhao J, Luo H J. Transport and crystallization of NaCl solution in porous silicate materials[J]. Journal of Crystal Growth,2019,519 :25-34. doi: 10.1016/j.jcrysgro.2019.05.003 [22] Zhao J, Luo H J, Huang X. Migration, distribution, and crystallization of NaCl and Na2SO4 solutions in three different media[J]. Crystals,2020,10 (6):444. doi: 10.3390/cryst10060444 [23] Zhao J, Luo H J, Huang X. Migration, crystallization and dissolution changes of salt solution with color rendering property in porous quartz materials[J]. Molecules (Basel, Switzerland),2020,25 (23):5708. doi: 10.3390/molecules25235708 [24] Zhao J, Luo H J, Huang X. CuSO4 chromogenic tracing for migration and crystallization of salt solution in porous materials[J]. Journal of Crystal Growth,2021,559 :126040. doi: 10.1016/j.jcrysgro.2021.126040 [25] Lazhar R, Najjari M, Prat M. Combined wicking and evaporation of NaCl solution with efflorescence formation: the efflorescence exclusion zone[J]. Physics of Fluids,2020,32 (6):067106. doi: 10.1063/5.0007548 [26] Derluyn H, Boone M, Desarnaud J, et al. Quantifying salt crystallization dynamics in sandstone using 4D laboratory X-ray micro-CT[C]. Science and Art: A Future for Stone, Proceeding of the 13th International Congress on the Deterioration and Conservation of Stone, 2016, 1: 83-90. [27] Caruso F, Wangler T, Flatt R J. Easy illustration of salt damage in stone[J]. Journal of Chemical Education,2018,95 (9):1615-1620. doi: 10.1021/acs.jchemed.7b00815 [28] Shokri-Kuehni S M S, Norouzi Rad M, Webb C, et al. Impact of type of salt and ambient conditions on saline water evaporation from porous media[J]. Advances in Water Resources,2017,105 :154-161. doi: 10.1016/j.advwatres.2017.05.004 [29] Dai S, Shin H, Santamarina J C. Formation and development of salt crusts on soil surfaces[J]. Acta Geotechnica,2016,11 (5):1103-1109. doi: 10.1007/s11440-015-0421-9 [30] Licsandru G, Noiriel C, Duru P, et al. Dissolution-precipitation-driven upward migration of a salt crust[J]. Physical Review E,2019,100 (3-1):032802. [31] Pel L, Pishkari R, Casti M. A simplified model for the combined wicking and evaporation of a NaCl solution in limestone[J]. Materials and Structures,2018,51 (3):66. doi: 10.1617/s11527-018-1187-y [32] Huang Z, Zhang W, Zhang H, et al. Damage characteristics and new constitutive model of sandstone under wet-dry cycles[J]. Journal of Mountain Science,2022,19 (7):2111-2125. doi: 10.1007/s11629-021-7239-8 [33] 陈港泉, 李茸, 靳治良, 等. 干旱环境下古代壁画保护成套技术集成与应用示范[R]. 20114BAK16B01, 甘肃, 敦煌研究院, 2017:117-134CHEN Gangquan, LI Rong, JIN Zhiliang, et al. Research on the series of technologies and application on conservation of Wall Paintings in arid environment[R]. Gansu, 20114BAK16B01, Dunhuang Academy, 2017: 117-134. -