扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一价/二价阳离子浓度对蛋白质-核酸液液相分离的调控

刘柱梁 郑寓 周诗航 王艳伟

刘柱梁, 郑寓, 周诗航, 王艳伟. 一价/二价阳离子浓度对蛋白质-核酸液液相分离的调控[J]. 分析测试技术与仪器, 2023, 29(2): 170-177. doi: 10.16495/j.1006-3757.2023.02.005
引用本文: 刘柱梁, 郑寓, 周诗航, 王艳伟. 一价/二价阳离子浓度对蛋白质-核酸液液相分离的调控[J]. 分析测试技术与仪器, 2023, 29(2): 170-177. doi: 10.16495/j.1006-3757.2023.02.005
LIU Zhuliang, ZHENG Yu, ZHOU Shihang, WANG Yanwei. Regulation of Monovalent/Divalent Cation Concentration on Liquid-Liquid Phase Separation of Protein-Nucleic Acid[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 170-177. doi: 10.16495/j.1006-3757.2023.02.005
Citation: LIU Zhuliang, ZHENG Yu, ZHOU Shihang, WANG Yanwei. Regulation of Monovalent/Divalent Cation Concentration on Liquid-Liquid Phase Separation of Protein-Nucleic Acid[J]. Analysis and Testing Technology and Instruments, 2023, 29(2): 170-177. doi: 10.16495/j.1006-3757.2023.02.005

一价/二价阳离子浓度对蛋白质-核酸液液相分离的调控

doi: 10.16495/j.1006-3757.2023.02.005
基金项目: 国家自然科学基金资助项目(NO.12074289,NO.11574232),浙江省自然科学基金资助项目(NO.Y23A040004)
详细信息
    作者简介:

    刘柱梁 (1997−),男,研究生,主要从事凝聚态物理研究,E-mail:20451025020@stu.wzu.edu.cn

    通讯作者:

    王艳伟(1981−),女,副教授,主要从事凝聚态物理研究,E-mail:wangyw@wzu.edu.cn

  • 中图分类号: O657; O652. 6

Regulation of Monovalent/Divalent Cation Concentration on Liquid-Liquid Phase Separation of Protein-Nucleic Acid

Funds: Supported by National Natural Science Foundation of China (NO.12074289, NO.11574232), National Natural Science Foundation of Zhejiang Province, China (NO.Y23A040004)
  • 摘要: 蛋白质和核酸的液液相分离(liquid-liquid phase separation, LLPS)对无膜细胞器的形成起着重要作用. 在病理研究中,LLPS也可以导致蛋白质的异常聚集从而引起某些神经退行性疾病的发生. 因此研究蛋白质-核酸LLPS的有效调控,能够对理解生物结构功能以及相关疾病治疗提供一定的参考价值. 主要利用光学显微镜、动态光散射仪以及紫外分光光度计,研究一价/二价阳离子对多聚赖氨酸(poly-L-lysine, PLL)-脱氧核糖核酸(DNA)LLPS的调控,并对其机制进行分析. 试验中观察到PLL-DNA的LLPS会随着钠/钾离子浓度的升高而逐渐形成沉淀,从出现沉淀到沉淀最多时,钠/钾离子浓度大约为100 mmol/L到 600 mmol/L. 在钠离子浓度高于600 mmol/L时聚合物沉淀开始溶解,再次有LLPS发生. 然而镁/钙离子对于PLL-DNA的聚合物的调控表现出更高的效率,形成沉淀的镁/钙离子临界浓度为50 mmol/L,重新发生LLPS的浓度大约为300 mmol/L. 通过对该溶液的吸光度进行分析,得到的结论与显微镜观察一致,并且该溶液的电泳迁移率随着一价/二价阳离子浓度的升高出现了逆转现象,即电泳值由负变正,说明一价/二价阳离子对蛋白质-核酸LLPS的调控与电荷变化有关,二价阳离子对其调控效率高于一价阳离子. 最后,绘制了一种聚合物的结构模型,并为这一相分离过程提供合理的解释.
  • 图  1  氯化钠、PLL与DNA溶液的相互作用

    (a) (b) 50 mmol/L NaCl,2 μg/μL PLL,(c) (d) 50 mmol/L NaCl,2 μg/μL DNA,(e) (f) 2 μg/μL PLL,2 μg/μL DNA

    Figure  1.  Interaction of sodium chloride, PLL and DNA solution

    (a) (b) 50 mmol/L NaCl, 2 μg/μL PLL, (c) (d) 50 mmol/L NaCl, 2 μg/μL DNA, (e) (f) 2 μg/μL PLL, 2 μg/μL DNA

    图  2  一价/二价阳离子对PLL-DNA聚合物的影响,其中PLL和DNA的质量浓度始终为2 μg/μL

    (a)~(e)在PLL-DNA溶液中加入NaCl溶液后的显微镜成像(其中NaCl浓度分别为10、100、300、600、800 mmol/L),(f)~(j)在PLL-DNA溶液中加入KCl溶液后的显微镜成像(其中KCl浓度分别为10、100、300、600、800 mmol/L),(k)~(o)在PLL-DNA溶液中加入MgCl2溶液后的显微镜成像(其中MgCl2浓度分别为2、50、150、300、500 mmol/L),(p)~(t)在PLL-DNA溶液中加入CaCl2溶液后的显微镜成像(其中CaCl2浓度分别为2、50、150、300 、500 mmol/L),溶液温度保持在35 ℃左右

    Figure  2.  Experimental observation of monovalent/divalent cations on PLL-DNA polymers, concentrations of PLL and DNA: 2 μg/μL

    (a)~(e) microscopic images after addition of NaCl solution to PLL-DNA solution (concentration of NaCl of 10, 100, 300, 600 and 800 mmol/L respectively), (f)~(j) microscopic images after addition of KCl to PLL-DNA solution (concentration of KCl of 10, 100, 300, 600 and 800 mmol/L respectively), (k)~(o) microscopic images after addition of MgCl2 to PLL-DNA solution (concentration of MgCl2 of 2, 50, 150, 300 and 500 mmol/L respectively), (p)~(t) microscopic images after addition of CaCl2 to PLL-DNA solution (concentration of CaCl2 of 2, 50, 150, 300 and 500 mmol/L respectively), temperature of solution: about 35 ℃

    图  3  不同阳离子溶液中PLL-DNA的凝聚物的吸光度曲线图,其中PLL和DNA的浓度始终为2 μg/μL

    (a)NaCl,(b)KCl,(c)MgCl2,(d)CaCl2

    Figure  3.  Absorbance change of PLL-DNA condensates in different cations solutions, concentration of PLL and DNA : 2 μg/μL

    (a) NaCl, (b) KCl, (c)MgCl2, (d) CaCl2

    图  4  外加电场下的PLL-DNA聚合物的电泳迁移率,其中PLL和DNA的浓度始终为1 ng/μL

    (a)NaCl,(b)KCl,(c)MgCl2,(d)CaCl2

    Figure  4.  Electrophoretic mobility of PLL-DNA polymer under applied electric field, concentration of PLL and DNA: 1 ng/μL

    (a) NaCl, (b) KCl, (c)MgCl2, (d) CaCl2

    图  5  PLL-DNA凝聚物在一价/二价盐离子中的微观结构

    (a)PLL-DNA溶液中的液滴结构,(b)加入一价阳离子后的PLL-DNA溶液中的沉淀结构,(c)加入二价阳离子后PLL-DNA溶液中的沉淀结构

    Figure  5.  Microstructure of PLL-DNA condensates in monovalent /divalent salt ions

    (a) droplet structure in PLL-DNA solution, (b) precipitation structure of PLL-DNA solution after addition of univalent cations, (c) precipitation structure of PLL-DNA solution after adding divalent cations

  • [1] Li J Q, Zhang Y, Chen X, et al. Protein phase separation and its role in chromatin organization and diseases[J]. Biomedicine & Pharmacotherapy,2021,138 :111520.
    [2] Banani S F, Lee H O, Hyman A A, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nature Reviews Molecular Cell Biology,2017,18 (5):285-298. doi: 10.1038/nrm.2017.7
    [3] Shin Y, Brangwynne C P. Liquid phase condensation in cell physiology and disease[J]. Science,2017,357 (6357):eaaf4382. doi: 10.1126/science.aaf4382
    [4] Van Treeck B, Parker R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies[J]. Cell,2018,174 (4):791-802. doi: 10.1016/j.cell.2018.07.023
    [5] Babinchak W M, Dumm B K, Venus S, et al. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation[J]. Nature Communications,2020,11 :5574. doi: 10.1038/s41467-020-19211-z
    [6] Pancsa R, Schad E, Tantos A, et al. Emergent functions of proteins in non-stoichiometric supramolecular assemblies[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2019,1867 (10):970-979. doi: 10.1016/j.bbapap.2019.02.007
    [7] Dolgin E. The shape-shifting blobs that shook up cell biology[J]. Nature,2022,611 (7934):24-27. doi: 10.1038/d41586-022-03477-y
    [8] Barandika O, Ezquerra-Inchausti M, Anasagasti A, et al. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2016,1862 (10):2015-2021. doi: 10.1016/j.bbadis.2016.08.001
    [9] Duan Y J, Du A Y, Gu J G, et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins[J]. Cell Research,2019,29 (3):233-247. doi: 10.1038/s41422-019-0141-z
    [10] Saito M, Hess D, Eglinger J, et al. Acetylation of intrinsically disordered regions regulates phase separation[J]. Nature Chemical Biology,2019,15 (1):51-61. doi: 10.1038/s41589-018-0180-7
    [11] Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nature Communications,2017,8 (1):1-13. doi: 10.1038/s41467-016-0009-6
    [12] Ukmar-Godec T, Hutten S, Grieshop M P, et al. Lysine/RNA-interactions drive and regulate biomolecular condensation[J]. Nature Communications,2019,10 :2909. doi: 10.1038/s41467-019-10792-y
    [13] Taratuta V G, Holschbach A, Thurston G M, et al. Liquid-liquid phase separation of aqueous lysozyme solutions: effects of pH and salt identity[J]. The Journal of Physical Chemistry,1990,94 (5):2140-2144. doi: 10.1021/j100368a074
    [14] Nedelsky N B, Taylor J P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease[J]. Nature Reviews Neurology,2019,15 (5):272-286. doi: 10.1038/s41582-019-0157-5
    [15] Ryan V H, Fawzi N L. Physiological, pathological, and targetable membraneless organelles in neurons[J]. Trends in Neurosciences,2019,42 (10):693-708. doi: 10.1016/j.tins.2019.08.005
    [16] Maharana S, Wang J, Papadopoulos D K, et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins[J]. Science,2018,360 (6391):918-921. doi: 10.1126/science.aar7366
    [17] Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell,2019,176 (3):419-434. doi: 10.1016/j.cell.2018.12.035
    [18] Shakya A, King J T. DNA local-flexibility-dependent assembly of phase-separated liquid droplets[J]. Biophysical Journal,2018,115 (10):1840-1847. doi: 10.1016/j.bpj.2018.09.022
    [19] Levone B R, Lenzken S C, Antonaci M, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation[J]. Journal of Cell Biology,2021,220 (5):e202008030. doi: 10.1083/jcb.202008030
    [20] Muzzopappa F, Hertzog M, Erdel F. DNA length tunes the fluidity of DNA-based condensates[J]. Biophysical Journal,2021,120 (7):1288-1300. doi: 10.1016/j.bpj.2021.02.027
    [21] Wagner E, Zatloukal K, Cotten M, et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89 (13):6099-6103. doi: 10.1073/pnas.89.13.6099
    [22] Kwoh D Y, Coffin C C, Lollo C P, et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver[J]. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression,1999,1444 (2):171-190. doi: 10.1016/S0167-4781(98)00274-7
    [23] Curiel D T, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes[J]. Human Gene Therapy,1992,3 (2):147-154. doi: 10.1089/hum.1992.3.2-147
    [24] Priftis D, Tirrell M. Phase behaviour and complex coacervation of aqueous polypeptide solutions[J]. Soft Matter,2012,8 (36):9396-9405. doi: 10.1039/C2SM25604E
    [25] Draper D E, Grilley D, Soto A M. Ions and RNA folding[J]. Annual Review of Biophysics and Biomolecular Structure,2005,34 :221-243. doi: 10.1146/annurev.biophys.34.040204.144511
    [26] Onoa B, Tinoco I. RNA folding and unfolding[J]. Current Opinion in Structural Biology,2004,14 (3):374-379. doi: 10.1016/j.sbi.2004.04.001
    [27] Wang Y W, Wang R X, Gao T Y, et al. The mixing counterion effect on DNA compaction and charge neutralization at low ionic strength[J]. Polymers,2018,10 (3):244. doi: 10.3390/polym10030244
  • 加载中
图(5)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 录用日期:  2023-05-21
  • 修回日期:  2023-05-21
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回