Study on Locating Sample in Vibrating Specimen Magnetometer Measurement by Physical Property Measurement System
-
摘要: 采用美国Quantum Design公司生产的综合物性测量系统振动样品磁强计(VSM)测量组件进行磁测量时,由于测试样品的原因,经常会出现MultiVU系统自动反馈位置参数不正确的情况. 通过对其自动反馈的过程进行分析,发现确定的非最佳位置获得的样品反馈磁信号和最佳位置的真实值存在对应的百分比值. 利用高场下强磁信号容易找到位置参数的特性,举例说明不用增加背景磁场,对自动反馈位置参数不正确的样品进行正常测试并推算百分比值,再利用该百分比值进行数据修正的方法. 方法确保测试数据的可靠性,减少不必要的时间浪费,可以提高测试效率.Abstract: When the vibrating specimen magnetometer (VSM) user kit of physical property measurement system (PPMS) produced by Quantum Design is used for the magnetic measurement, it is usually shown that the MultiVU software cannot feedback the correct position parameter due to different kinds of test samples. Through the analysis of the automatic feedback the process, it was found that there was a percentage value corresponding to the feedback magnetic signal of the sample obtained from the determined non-optimal position and the real value of the optimal position. According to the convenience of getting the position parameter by the strong magnetic signal in high field, examples were given to illustrate a method for the data correction without adding the background field, which was performing normal testing and extrapolating percentage values for samples with incorrect automatic feedback position parameters, and then using the percentage values for data correction. The method can ensure the reliability of measurement data, reduce unnecessary waste of time, and improve the test efficiency.
-
Key words:
- magnetic measurement /
- PPMS /
- VSM /
- magnetizing curve
-
图 3 不同背景磁场下的曲线及不正确的位置参数
(a) 100×250/π A/m,(b) 200×250/π A/m,(c) 500×250/π A/m,(d) 1 000×250/π A/m, (e) 2 000×250/π A/m,(f) 5 000×250/π A/m
Figure 3. Incorrect position parameters of automatic feedback and fitting curves obtained at different background fields
(a) 100×250/π A/m,(b) 200×250/π A/m,(c) 500×250/π A/m,(d) 1 000×250/π A/m, (e) 2 000×250/π A/m,(f) 5 000×250/π A/m
-
[1] Quantum Design-磁学测量系统-MPMS(SQUID)XL[Z/OL]. [2023-04-24]. https://www.qd-china.com/zh/pro/detail3/1/1912161589254/1909260926498. [2] Quantum Design-全新一代磁学测量系统-MPMS3[Z/OL]. [2023-04-24]. https://www.qd-china.com/zh/pro/detail3/1/1912091468764/1909260926498. [3] 张焱, 高政祥, 高进, 等. 磁性测量系统(MPMS-XL)的原理及其应用[J]. 现代仪器,2003,5:36-39ZHANG Yan, GAO Zhengxiang, GAO Jin, et al. Principle and applications of MPMS system[J]. Modern Instruments,2003,5 :36-39. [4] Quantum Design-综合物性测量系统-PPMS[Z/OL]. [2023-04-24]. https://www.qd-china.com/zh/pro/detail3/1/1912091480804/1909260926498. [5] 张焱, 高政祥, 高进, 等. 物理性质测量系统(PPMS)的原理及其应用[J]. 现代仪器,2004,5:44-47ZHANG Yan, GAO Zhengxiang, GAO Jin, et al. Principle and applications of PPMS system[J]. Modern Instruments,2004,5 :44-47. [6] Quantum Design-PPMS-VSM振动样品磁强计[Z/OL]. [2023-04-24]. https://qd-china.com/zh/pro/detail/1912161132946. [7] 苏少奎. 低温物性及测量: 一个实验技术人员的理解和经验总结[M]. 北京: 科学出版社, 2019. [8] 于红云. SQUID-VSM磁性测量误差研究[J]. 实验技术与管理,2015,32(1):61-64YU Hongyun. Study on magnetic measurement error of SQUID-VSM[J]. Experimental Technology and Management,2015,32 (1):61-64. [9] O’Shea M J, Al-Sharif A L. Inverted hysteresis in magnetic systems with interface exchange[J]. Journal of Applied Physics,1994,75 (10):6673-6675. doi: 10.1063/1.356891 [10] 于红云. 超导磁体剩余磁场对软磁材料测试的影响[J]. 物理学报,2014,63(4):290-294YU Hongyun. Effect of sup erconducting magnet remanence on the soft magnetic material measurements[J]. Acta Physica Sinica,2014,63 (4):290-294. [11] 王峰. 物性测量系统的功能扩展[J]. 硅谷,2012,5(18):33WANG Feng. Functioin expansion of physical property measurement system[J]. Silicon Valley,2012,5 (18):33. [12] 毕四军, 李喜玲. 磁学测量系统的功能扩充[J]. 分析测试技术与仪器,2021,27(1):44-49BI Sijun, LI Xiling. Function expansion of magnetic measurement system[J]. Analysis and Testing Technology and Instruments,2021,27 (1):44-49. -