Advancement of Traveling Wave Ion Mobility Spectrometry and Its Application
-
摘要: 离子迁移谱(ion mobility spectrometry,IMS)是利用离子迁移率K(离子碰撞截面)差异来实现不同离子的分离与测定,具有分析速度快、检测灵敏度高的优点,其与质谱联用在蛋白质组学、代谢组学、医药等领域已获得了广泛的应用. 随着分析对象复杂性的增加,对IMS的分辨能力也提出了更高要求. 行波离子迁移谱(travelling wave ion mobility spectrometry,TWIMS)采用时域连续的行波电场实现离子传输与分离,其分析通道的长度不受行波电压幅值的限制,理论上可以无限延长离子分析通道来提高分辨能力. 目前,TWIMS的分辨率最高可达1 860,对于分析存在多种同分异构体的复杂样品别具优势. 对TWIMS的原理及分辨能力的影响因素进行了介绍,进一步探讨了不同结构TWIMS仪器的特点、性能和应用,对TWIMS未来发展方向进行了展望.Abstract: Ion mobility spectrometry (IMS) utilizes the difference in ion mobility K (collision cross section) to realize the separation and determination of different ions, which has the advantages of fast analysis speed and high sensitivity. And it coupling with mass spectrometry (IM-MS) was widely used in the fields of proteomics, metabolomics, medicine, etc. With the increasing complexity of the analyzed objects, higher demands are put on the resolution of the IMS. Traveling wave ion mobility spectrometry (TWIMS) uses a time-domain continuous traveling wave electric field to realize ion transport and separation. The analytical path length of the TWIMS is not limited by the amplitude of the travelling wave voltage, theoretically the path can be extended indefinitely to improve the resolution. Currently, the resolution of TWIMS can reach up to 1 860, which is advantageous for the analysis of complex samples with the multiple isomers. The principle of TWIMS and the influencing factors of resolution were introduced, the characteristics, performance and applications of TWIMS instruments with different structures were further discussed, and finally the future development directions of TWIMS were prospected.
-
图 4 cIM的结构示意图[35]
(a)cIM平台概览,(b)cIM设备,(c)包含阵列电极结构的离子注入/喷射区域,(d)cIM电极结构,(e)离子注入/喷射模式下行波方向为x或-x,(f)分离模式下行波方向为y
Figure 4. Schematic diagram of structure of cIM [35]
(a) overview of cIM plateform, (b) cIM device, (c) ion entry/exit region, consisting of array electrodes, (d) structure of cIM electrodes, (e) ion injection/ejection mode, array TWs applied in x (or -x) direction, (f) separation mode, array TWs applied in y-direction
图 5 激活的+7 CytC离子的(a)到达时间分布,(b)16~17 ms、(c)19~20 ms、(d)23~24 ms和(e)26~27 ms切片的CIU指纹,α、β、γ、δ、ε和ζ表示离子种群[37]
Figure 5. (a) Arrival time distribution of activated +7 CytC ion, and CIU fingerprints for slices (b) 16~17 ms, (c) 19~20 ms, (d) 23~24 ms, (e) 26~27 ms, populations labeled as α, β, γ, δ, ε and ζ[37]
表 1 不同IMS技术对比
Table 1. Comparison of different IMS
-
[1] Eiceman G A, Karpas Z, Hill H H. Ion mobility spectrometry[M]. 3rd ed. Boca Raton: Taylor & Francis, 2013. [2] 王玉娜, 孟宪双, 刘丽娟, 等. 离子淌度质谱技术及其应用研究进展[J]. 分析测试学报,2018,37(10):1130-1138WANG Yuna, MENG Xianshuang, LIU Lijuan, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis,2018,37 (10):1130-1138. [3] Koomen D C, May J C, McLean J A. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry[J]. Expert Review of Proteomics,2022,19 (1):17-31. doi: 10.1080/14789450.2022.2026218 [4] Garcia X, Sabate M D M, Aubets J, et al. Ion mobility-mass spectrometry for bioanalysis[J]. Separations,2021,8 (3):33. doi: 10.3390/separations8030033 [5] 刘娟, 陆颖洁, 黄益曼, 等. 基于离子淌度-质谱技术分析小分子代谢物的研究进展[J]. 质谱学报,2022,43(5):533-551LIU Juan, LU Yingjie, HUANG Yiman, et al. Recent advances in small molecule metabolites analysis by ion mobility-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2022,43 (5):533-551. [6] 许霞, 朱致君, 李灵军, 等. 蛋白质立体化学修饰的离子淌度质谱研究进展[J]. 质谱学报,2022,43(5):580-595XU Xia, ZHU Zhijun, LI Lingjun, et al. Recent progress in protein stereochemical modifications revealed by ion mobility-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2022,43 (5):580-595. [7] Revercomb H E, Mason E A. Theory of plasma chromatography/gaseous electrophoresis Review[J]. Analytical Chemistry,1975,47 (7):970-983. doi: 10.1021/ac60357a043 [8] Ibrahim Y M, Hamid A M, Deng L L, et al. New frontiers for mass spectrometry based upon structures for lossless ion manipulations[J]. Analyst,2017,142 (7):1010-1021. doi: 10.1039/C7AN00031F [9] Deng L L, Webb I K, Garimella S V B, et al. Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations[J]. Analytical Chemistry,2017,89 (8):4628-4634. doi: 10.1021/acs.analchem.7b00185 [10] 卢佳艺, 张允晶, 李灵锋, 等. 无损离子操纵结构的研究进展[J]. 分析化学,2022,50(12):1783-1795LU Jiayi, ZHANG Yunjing, LI Lingfeng, et al. Advance in structures for lossless ion manipulations[J]. Chinese Journal of Analytical Chemistry,2022,50 (12):1783-1795. [11] Kirk A T, Raddatz C R, Zimmermann S. Separation of isotopologues in ultra-high-resolution ion mobility spectrometry[J]. Analytical Chemistry,2017,89 (3):1509-1515. doi: 10.1021/acs.analchem.6b03300 [12] Giles K, Ujma J, Wildgoose J L, et al. Design and performance of a second-generation cyclic ion mobility enabled Q-TOF[C]. ASMS Conference on Mass Spectrometry and Allied Topics, 2017. [13] Adams K J, Montero D, Aga D D, et al. Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS[J]. International Journal for Ion Mobility Spectrometry,2016,19 (2):69-76. [14] Giles K, Pringle S D, Worthington K R, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide[J]. Rapid Communications in Mass Spectrometry,2004,18 (20):2401-2414. doi: 10.1002/rcm.1641 [15] Shvartsburg A A, Smith R D. Fundamentals of traveling wave ion mobility spectrometry[J]. Analytical Chemistry,2008,80 (24):9689-9699. doi: 10.1021/ac8016295 [16] Richardson K, Langridge D, Giles K. Fundamentals of travelling wave ion mobility revisited: I. Smoothly moving waves[J]. International Journal of Mass Spectrometry,2018,428 :71-80. doi: 10.1016/j.ijms.2018.03.007 [17] Wildgoose J, Giles K, Pringle S, et al. Proc. 54th ASMS Conf. mass spectrometry and allied topics[C]. 2006. [18] Kanu A B, Dwivedi P, Tam M, et al. Ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry,2008,43 (1):1-22. doi: 10.1002/jms.1383 [19] Giles K, Williams J P, Campuzano I. Enhancements in travelling wave ion mobility resolution[J]. Rapid Communications in Mass Spectrometry,2011,25 (11):1559-1566. doi: 10.1002/rcm.5013 [20] Campuzano I D G, Giles K. Historical, current and future developments of travelling wave ion mobility mass spectrometry: a personal perspective[J]. TrAC Trends in Analytical Chemistry,2019,120 :115620. doi: 10.1016/j.trac.2019.115620 [21] Hale O J, Sisley E K, Griffiths R L, et al. Native LESA TWIMS-MSI: spatial, conformational, and mass analysis of proteins and protein complexes[J]. Journal of the American Society for Mass Spectrometry,2020,31 (4):873-879. doi: 10.1021/jasms.9b00122 [22] Towers M W, Karancsi T, Jones E A, et al. Optimised desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) for the analysis of proteins/peptides directly from tissue sections on a travelling wave ion mobility Q-ToF[J]. Journal of the American Society for Mass Spectrometry,2018,29 (12):2456-2466. doi: 10.1007/s13361-018-2049-0 [23] Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry[J]. Nature Protocols,2017,12 (4):797-813. doi: 10.1038/nprot.2017.013 [24] Rister A L, Martin T L, Dodds E D. Application of group I metal adduction to the separation of steroids by traveling wave ion mobility spectrometry[J]. Journal of the American Society for Mass Spectrometry,2019,30 (2):248-255. doi: 10.1007/s13361-018-2085-9 [25] Zang X L, Monge M E, Gaul D A, et al. Flow injection-traveling-wave ion mobility-mass spectrometry for prostate-cancer metabolomics[J]. Analytical Chemistry,2018,90 (22):13767-13774. doi: 10.1021/acs.analchem.8b04259 [26] Bauer A, Luetjohann J, Hanschen F S, et al. Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS)[J]. Food Chemistry,2018,244 :292-303. doi: 10.1016/j.foodchem.2017.09.131 [27] Zhang Y H, Lei H B, Tao J F, et al. An integrated approach for structural characterization of Gui Ling Ji by traveling wave ion mobility mass spectrometry and molecular network[J]. RSC Advances,2021,11 (26):15546-15556. doi: 10.1039/D1RA01834E [28] Gao Y, Wu Y, Liu S, et al. A strategy to comprehensively and quickly identify the chemical constituents in Platycodi Radix by ultra-performance liquid chromatography coupled with traveling wave ion mobility quadrupole time-of-flight mass spectrometry[J]. Journal of Separation Science,2021,44 (3):691-708. doi: 10.1002/jssc.202000913 [29] Cheng T F, Ye J, Li H L, et al. Hybrid multidimensional data acquisition and data processing strategy for comprehensive characterization of known, unknown and isomeric compounds from the compound Dan Zhi Tablet by UPLC-TWIMS-QTOFMS[J]. RSC Advances,2019,9 (16):8714-8727. doi: 10.1039/C8RA10100K [30] Williams J P, Brown J M, Campuzano I, et al. Identifying drugmetallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-MS)[J]. Chemical Communications,2010,46 (30):5458-5460. doi: 10.1039/c0cc00358a [31] Martin E M, Kondrat F D L, Stewart A J, et al. Native electrospray mass spectrometry approaches to probe the interaction between zinc and an anti-angiogenic peptide from histidine-rich glycoprotein[J]. Scientific Reports,2018,8 (1):1-13. [32] Lermyte F, Konijnenberg A, Williams J P, et al. ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument[J]. Journal of the American Society for Mass Spectrometry,2014,25 (3):343-350. doi: 10.1007/s13361-013-0798-3 [33] StepWave[EB/OL]. [2012-04-23]. https://www.waters.com/waters/zh_CN/StepWave/nav.htm?cid=134673601. [34] Giles K, Wildgoose J L, Pringle S D, et al. Design and utility of a multi-pass cyclic ion mobility separator[C]. ASMS Conference on Mass Spectrometry and Allied Topics, 2014. [35] Giles K, Ujma J, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system[J]. Analytical Chemistry,2019,91 (13):8564-8573. doi: 10.1021/acs.analchem.9b01838 [36] Sisley E K, Ujma J, Palmer M, et al. LESA cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections[J]. Analytical Chemistry,2020,92 (9):6321-6326. doi: 10.1021/acs.analchem.9b05169 [37] Eldrid C, Ujma J, Kalfas S, et al. Gas phase stability of protein ions in a cyclic ion mobility spectrometry traveling wave device[J]. Analytical Chemistry,2019,91 (12):7554-7561. doi: 10.1021/acs.analchem.8b05641 [38] Eldrid C, Ben-Younis A, Ujma J, et al. Cyclic ion mobility-collision activation experiments elucidate protein behavior in the gas phase[J]. Journal of the American Society for Mass Spectrometry,2021,32 (6):1545-1552. doi: 10.1021/jasms.1c00018 [39] Cho E, Riches E, Palmer M, et al. Isolation of crude oil peaks differing by m/z~0.1 via tandem mass spectrometry using a cyclic ion mobility-mass spectrometer[J]. Analytical Chemistry,2019,91 (22):14268-14274. doi: 10.1021/acs.analchem.9b02255 [40] Rüger C P, Le Maître J, Maillard J, et al. Exploring complex mixtures by cyclic ion mobility high-resolution mass spectrometry: application toward petroleum[J]. Analytical Chemistry,2021,93 (14):5872-5881. doi: 10.1021/acs.analchem.1c00222 [41] Garimella S V B, Ibrahim Y M, Webb I K, et al. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM)[J]. Journal of the American Society for Mass Spectrometry,2014,25 (11):1890-1896. doi: 10.1007/s13361-014-0976-y [42] Tolmachev A V, Webb I K, Ibrahim Y M, et al. Characterization of ion dynamics in structures for lossless ion manipulations[J]. Analytical Chemistry,2014,86 (18):9162-9168. doi: 10.1021/ac502054p [43] Webb I K, Garimella S V B, Tolmachev A V, et al. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations[J]. Analytical Chemistry,2014,86 (19):9632-9637. doi: 10.1021/ac502139e [44] Webb I K, Garimella S V B, Tolmachev A V, et al. Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry[J]. Analytical Chemistry,2014,86 (18):9169-9176. doi: 10.1021/ac502055e [45] Zhang X Y, Garimella S V B, Prost S A, et al. Ion trapping, storage, and ejection in structures for lossless ion manipulations[J]. Analytical Chemistry,2015,87 (12):6010-6016. doi: 10.1021/acs.analchem.5b00214 [46] Chen T C, Ibrahim Y M, Webb I K, et al. Mobility-selected ion trapping and enrichment using structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (3):1728-1733. doi: 10.1021/acs.analchem.5b03910 [47] Hamid A M, Ibrahim Y M, Garimella S V B, et al. Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations[J]. Analytical Chemistry,2015,87 (22):11301-11308. doi: 10.1021/acs.analchem.5b02481 [48] Hamid A M, Garimella S V B, Ibrahim Y M, et al. Achieving high resolution ion mobility separations using traveling waves in compact multiturn structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (18):8949-8956. doi: 10.1021/acs.analchem.6b01914 [49] Deng L L, Ibrahim Y M, Hamid A M, et al. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module[J]. Analytical Chemistry,2016,88 (18):8957-8964. doi: 10.1021/acs.analchem.6b01915 [50] Wormwood Moser K L, Van Aken G, DeBord D, et al. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics[J]. Analytica Chimica Acta,2021,1146 :77-87. doi: 10.1016/j.aca.2020.12.022 [51] Wojcik R, Webb I, Deng L L, et al. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations[J]. International Journal of Molecular Sciences,2017,18 (1):183. doi: 10.3390/ijms18010183 [52] Nagy G, Chouinard C D, Attah I K, et al. Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations[J]. Electrophoresis,2018,39 (24):3148-3155. doi: 10.1002/elps.201800294 [53] Nagy G, Attah I K, Garimella S V B, et al. Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations[J]. Chemical Communications,2018,54 (83):11701-11704. doi: 10.1039/C8CC06966B [54] Nagy G, Kedia K, Attah I K, et al. Separation of β-amyloid tryptic peptide species with isomerized and racemized L-asparagin residues with ion mobility in structures for lossless ion manipulations[J]. Analytical Chemistry,2019,91 (7):4374-4380. doi: 10.1021/acs.analchem.8b04696 [55] Garimella S V B, Hamid A M, Deng L L, et al. Squeezing of ion populations and peaks in traveling wave ion mobility separations and structures for lossless ion manipulations using compression ratio ion mobility programming[J]. Analytical Chemistry,2016,88 (23):11877-11885. doi: 10.1021/acs.analchem.6b03660 [56] Deng L L, Garimella S V B, Hamid A M, et al. Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass spectrometry using traveling waves in structures for lossless ion manipulations (SLIM)[J]. Analytical Chemistry,2017,89 (12):6432-6439. doi: 10.1021/acs.analchem.7b00189 [57] Hollerbach A L, Conant C R, Nagy G, et al. Implementation of ion mobility spectrometry-based separations in structures for lossless ion manipulations (SLIM)[M]// Biomedical Engineering Technologies. New York: Humana, 2022: 453-469. [58] Deng L L, Ibrahim Y M, Garimella S V B, et al. Greatly increasing trapped ion populations for mobility separations using traveling waves in structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (20):10143-10150. doi: 10.1021/acs.analchem.6b02678 [59] Li A L, Nagy G, Conant C R, et al. Ion mobility spectrometry with high ion utilization efficiency using traveling wave-based structures for lossless ion manipulations[J]. Analytical Chemistry,2020,92 (22):14930-14938. doi: 10.1021/acs.analchem.0c02100 [60] Deng L L, LaForest J M, Anderson G A, et al. Integration of a high duty cycle SLIM mobility filter with a triple quadrupole mass spectrometer for targeted quantitative analysis[J]. International Journal of Mass Spectrometry,2022,475 :116832. doi: 10.1016/j.ijms.2022.116832 [61] Ibrahim Y M, Hamid A M, Cox J T, et al. Ion elevators and escalators in multilevel structures for lossless ion manipulations[J]. Analytical Chemistry,2017,89 (3):1972-1977. doi: 10.1021/acs.analchem.6b04500 [62] Hollerbach A L, Norheim R V, Kwantwi-Barima P, et al. A miniature multilevel structures for lossless ion manipulations ion mobility spectrometer with wide mobility range separation capabilities[J]. Analytical Chemistry,2022,94 (4):2180-2188. doi: 10.1021/acs.analchem.1c04700 [63] Li A L, Conant C R, Zheng X Y, et al. Assessing collision cross section calibration strategies for traveling wave-based ion mobility separations in structures for lossless ion manipulations[J]. Analytical Chemistry,2020,92 (22):14976-14982. doi: 10.1021/acs.analchem.0c02829 [64] Mortensen D N, Susa A C, Williams E R. Collisional cross-sections with T-wave ion mobility spectrometry without experimental calibration[J]. Journal of the American Society for Mass Spectrometry,2017,28 (7):1282-1292. doi: 10.1007/s13361-017-1669-0 [65] Richardson K, Langridge D, Dixit S M, et al. An improved calibration approach for traveling wave ion mobility spectrometry: robust, high-precision collision cross sections[J]. Analytical Chemistry,2021,93 (7):3542-3550. doi: 10.1021/acs.analchem.0c04948 -