扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行波离子迁移谱技术及应用研究进展

潘慢慢 李杭 徐一仟 杨其穆 蒋丹丹 王卫国 陈创 李海洋

潘慢慢, 李杭, 徐一仟, 杨其穆, 蒋丹丹, 王卫国, 陈创, 李海洋. 行波离子迁移谱技术及应用研究进展[J]. 分析测试技术与仪器, 2023, 29(3): 231-244. doi: 10.16495/j.1006-3757.2023.03.001
引用本文: 潘慢慢, 李杭, 徐一仟, 杨其穆, 蒋丹丹, 王卫国, 陈创, 李海洋. 行波离子迁移谱技术及应用研究进展[J]. 分析测试技术与仪器, 2023, 29(3): 231-244. doi: 10.16495/j.1006-3757.2023.03.001
PAN Manman, LI Hang, XU Yiqian, YANG Qimu, JIANG Dandan, WANG Weiguo, CHEN Chuang, LI Haiyang. Advancement of Traveling Wave Ion Mobility Spectrometry and Its Application[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 231-244. doi: 10.16495/j.1006-3757.2023.03.001
Citation: PAN Manman, LI Hang, XU Yiqian, YANG Qimu, JIANG Dandan, WANG Weiguo, CHEN Chuang, LI Haiyang. Advancement of Traveling Wave Ion Mobility Spectrometry and Its Application[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 231-244. doi: 10.16495/j.1006-3757.2023.03.001

行波离子迁移谱技术及应用研究进展

doi: 10.16495/j.1006-3757.2023.03.001
基金项目: 国家自然科学基金项目(Nos. 22027804, 21974141),国民核生化灾害防护国家重点实验室科研基金项目(SKLNBC2021-16),大连化物所创新研究基金项目(DICP I202141)
详细信息
    作者简介:

    潘慢慢(1998−),女,博士研究生,主要从事质谱分析工作,E-mail:panmanman@dicp.ac.cn

    通讯作者:

    陈创(1984−),男,博士,《分析测试技术与仪器》青年编委,主要从事质谱分析工作,E-mail:chenchuang@dicp.ac.cn

    李海洋(1964−),男,博士,《分析测试技术与仪器》编委,主要从事质谱分析工作,E-mail:hli@dicp.ac.cn

  • 中图分类号: O657. 63

Advancement of Traveling Wave Ion Mobility Spectrometry and Its Application

Funds: Natural Science Foundation of China (Nos. 22027804, 21974141), State Key Laboratory of NBC Protection for Civilian (SKLNBC2021-16), Dalian Institute of Chemical Physics (DICP I202141)
  • 摘要: 离子迁移谱(ion mobility spectrometry,IMS)是利用离子迁移率K(离子碰撞截面)差异来实现不同离子的分离与测定,具有分析速度快、检测灵敏度高的优点,其与质谱联用在蛋白质组学、代谢组学、医药等领域已获得了广泛的应用. 随着分析对象复杂性的增加,对IMS的分辨能力也提出了更高要求. 行波离子迁移谱(travelling wave ion mobility spectrometry,TWIMS)采用时域连续的行波电场实现离子传输与分离,其分析通道的长度不受行波电压幅值的限制,理论上可以无限延长离子分析通道来提高分辨能力. 目前,TWIMS的分辨率最高可达1 860,对于分析存在多种同分异构体的复杂样品别具优势. 对TWIMS的原理及分辨能力的影响因素进行了介绍,进一步探讨了不同结构TWIMS仪器的特点、性能和应用,对TWIMS未来发展方向进行了展望.
  • 图  1  行波场中离子(a)(c)翻滚事件和(b)“冲浪”行为的SIMION轨迹模拟,(d)行波场的产生[14]

    Figure  1.  SIMION simulation showing ions (a) (c) roll over wave and (b) surf wave, (d) generation of travelling wave[14]

    图  2  (a)第一代行波离子迁移管[14],(b)Synapt HDMS示意图[18]

    Figure  2.  (a) First generation TWIM separator[14], (b) schematic diagram of Synapt HDMS system[18]

    图  3  Synapt HDMS和Synapt G2 HDMS的(a)IM腔室,行波电压(b)施加方式和(c)重复模式对比图[19]

    Figure  3.  Comparison of (a) IM cells, (b) applied voltage and (c) repeat pattern of travelling wave between Synapt HDMS and Synapt G2 HDMS[19]

    图  4  cIM的结构示意图[35]

    (a)cIM平台概览,(b)cIM设备,(c)包含阵列电极结构的离子注入/喷射区域,(d)cIM电极结构,(e)离子注入/喷射模式下行波方向为x或-x,(f)分离模式下行波方向为y

    Figure  4.  Schematic diagram of structure of cIM [35]

    (a) overview of cIM plateform, (b) cIM device, (c) ion entry/exit region, consisting of array electrodes, (d) structure of cIM electrodes, (e) ion injection/ejection mode, array TWs applied in x (or -x) direction, (f) separation mode, array TWs applied in y-direction

    图  5  激活的+7 CytC离子的(a)到达时间分布,(b)16~17 ms、(c)19~20 ms、(d)23~24 ms和(e)26~27 ms切片的CIU指纹,αβγδεζ表示离子种群[37]

    Figure  5.  (a) Arrival time distribution of activated +7 CytC ion, and CIU fingerprints for slices (b) 16~17 ms, (c) 19~20 ms, (d) 23~24 ms, (e) 26~27 ms, populations labeled as α, β, γ, δ, ε and ζ[37]

    图  6  TW-SLIM的电极结构[47]

    Figure  6.  Structure of electrodes in TW-SLIM[47]

    图  7  (a)13 m长的蛇形TW-SLIM[49],(b)循环蛇形路径TW-SLIM和动态离子开关[9]

    Figure  7.  (a) 13 m serpentine path length TW-SLIM[49], (b) serpentine ultralong path with extended routing TW-SLIM and dynamic ion switch[9]

    图  8  (a)1次和(b)9次通过后获得的乳-N-六糖和乳-N-新六糖的迁移率分离结果[9]

    Figure  8.  IM-MS separation of sugar isomers lacto-N-hexaose and lacto-N-neohexaose obtained at (a) 1 pass and (b) 9 passes[9]

    图  9  (a)SLIM-QQQ平台示意图,每条离子路径中包含的(b)SOBA、(c)预过滤区域、(d)过滤门和(e)出口三通的图示[60]

    Figure  9.  (a) Schematic diagram of SLIM-QQQ platform, illustration of different subsections including (b) SOBA, (c) pre-filter, (d) mobility filter gate and (e) exit tee in each ion path [60]

    图  10  miniSLIM结构图[62]

    Figure  10.  Structure diagram of miniSLIM[62]

    表  1  不同IMS技术对比

    Table  1.   Comparison of different IMS

    IMS技术工作气压[10]分离场CCS测量最高分辨率/(Ω/ΔΩ)联用技术
    迁移时间离子迁移谱
    (DTIMS)
    266 Pa~大气压强直流电场直接测量250[11]IMS-MS, GC (gas chromatography)-IMS等
    非对称场离子迁移谱
    (FAIMS/DMS)
    大气压强非对称射频电场无法测量NullGC-DMS, DMS-MS等
    行波场离子迁移谱
    (TWIMS)
    ~533 Pa方波直流电场需经校准1 860[9]
    550[12]
    TWIMS-MS
    阱离子迁移谱
    (TIMS)
    ~400 Pa气流场结合直流电场需经校准400[13]TIMS-MS
    下载: 导出CSV
  • [1] Eiceman G A, Karpas Z, Hill H H. Ion mobility spectrometry[M]. 3rd ed. Boca Raton: Taylor & Francis, 2013.
    [2] 王玉娜, 孟宪双, 刘丽娟, 等. 离子淌度质谱技术及其应用研究进展[J]. 分析测试学报,2018,37(10):1130-1138

    WANG Yuna, MENG Xianshuang, LIU Lijuan, et al. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J]. Journal of Instrumental Analysis,2018,37 (10):1130-1138.
    [3] Koomen D C, May J C, McLean J A. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry[J]. Expert Review of Proteomics,2022,19 (1):17-31. doi: 10.1080/14789450.2022.2026218
    [4] Garcia X, Sabate M D M, Aubets J, et al. Ion mobility-mass spectrometry for bioanalysis[J]. Separations,2021,8 (3):33. doi: 10.3390/separations8030033
    [5] 刘娟, 陆颖洁, 黄益曼, 等. 基于离子淌度-质谱技术分析小分子代谢物的研究进展[J]. 质谱学报,2022,43(5):533-551

    LIU Juan, LU Yingjie, HUANG Yiman, et al. Recent advances in small molecule metabolites analysis by ion mobility-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2022,43 (5):533-551.
    [6] 许霞, 朱致君, 李灵军, 等. 蛋白质立体化学修饰的离子淌度质谱研究进展[J]. 质谱学报,2022,43(5):580-595

    XU Xia, ZHU Zhijun, LI Lingjun, et al. Recent progress in protein stereochemical modifications revealed by ion mobility-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2022,43 (5):580-595.
    [7] Revercomb H E, Mason E A. Theory of plasma chromatography/gaseous electrophoresis Review[J]. Analytical Chemistry,1975,47 (7):970-983. doi: 10.1021/ac60357a043
    [8] Ibrahim Y M, Hamid A M, Deng L L, et al. New frontiers for mass spectrometry based upon structures for lossless ion manipulations[J]. Analyst,2017,142 (7):1010-1021. doi: 10.1039/C7AN00031F
    [9] Deng L L, Webb I K, Garimella S V B, et al. Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations[J]. Analytical Chemistry,2017,89 (8):4628-4634. doi: 10.1021/acs.analchem.7b00185
    [10] 卢佳艺, 张允晶, 李灵锋, 等. 无损离子操纵结构的研究进展[J]. 分析化学,2022,50(12):1783-1795

    LU Jiayi, ZHANG Yunjing, LI Lingfeng, et al. Advance in structures for lossless ion manipulations[J]. Chinese Journal of Analytical Chemistry,2022,50 (12):1783-1795.
    [11] Kirk A T, Raddatz C R, Zimmermann S. Separation of isotopologues in ultra-high-resolution ion mobility spectrometry[J]. Analytical Chemistry,2017,89 (3):1509-1515. doi: 10.1021/acs.analchem.6b03300
    [12] Giles K, Ujma J, Wildgoose J L, et al. Design and performance of a second-generation cyclic ion mobility enabled Q-TOF[C]. ASMS Conference on Mass Spectrometry and Allied Topics, 2017.
    [13] Adams K J, Montero D, Aga D D, et al. Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS[J]. International Journal for Ion Mobility Spectrometry,2016,19 (2):69-76.
    [14] Giles K, Pringle S D, Worthington K R, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide[J]. Rapid Communications in Mass Spectrometry,2004,18 (20):2401-2414. doi: 10.1002/rcm.1641
    [15] Shvartsburg A A, Smith R D. Fundamentals of traveling wave ion mobility spectrometry[J]. Analytical Chemistry,2008,80 (24):9689-9699. doi: 10.1021/ac8016295
    [16] Richardson K, Langridge D, Giles K. Fundamentals of travelling wave ion mobility revisited: I. Smoothly moving waves[J]. International Journal of Mass Spectrometry,2018,428 :71-80. doi: 10.1016/j.ijms.2018.03.007
    [17] Wildgoose J, Giles K, Pringle S, et al. Proc. 54th ASMS Conf. mass spectrometry and allied topics[C]. 2006.
    [18] Kanu A B, Dwivedi P, Tam M, et al. Ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry,2008,43 (1):1-22. doi: 10.1002/jms.1383
    [19] Giles K, Williams J P, Campuzano I. Enhancements in travelling wave ion mobility resolution[J]. Rapid Communications in Mass Spectrometry,2011,25 (11):1559-1566. doi: 10.1002/rcm.5013
    [20] Campuzano I D G, Giles K. Historical, current and future developments of travelling wave ion mobility mass spectrometry: a personal perspective[J]. TrAC Trends in Analytical Chemistry,2019,120 :115620. doi: 10.1016/j.trac.2019.115620
    [21] Hale O J, Sisley E K, Griffiths R L, et al. Native LESA TWIMS-MSI: spatial, conformational, and mass analysis of proteins and protein complexes[J]. Journal of the American Society for Mass Spectrometry,2020,31 (4):873-879. doi: 10.1021/jasms.9b00122
    [22] Towers M W, Karancsi T, Jones E A, et al. Optimised desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) for the analysis of proteins/peptides directly from tissue sections on a travelling wave ion mobility Q-ToF[J]. Journal of the American Society for Mass Spectrometry,2018,29 (12):2456-2466. doi: 10.1007/s13361-018-2049-0
    [23] Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry[J]. Nature Protocols,2017,12 (4):797-813. doi: 10.1038/nprot.2017.013
    [24] Rister A L, Martin T L, Dodds E D. Application of group I metal adduction to the separation of steroids by traveling wave ion mobility spectrometry[J]. Journal of the American Society for Mass Spectrometry,2019,30 (2):248-255. doi: 10.1007/s13361-018-2085-9
    [25] Zang X L, Monge M E, Gaul D A, et al. Flow injection-traveling-wave ion mobility-mass spectrometry for prostate-cancer metabolomics[J]. Analytical Chemistry,2018,90 (22):13767-13774. doi: 10.1021/acs.analchem.8b04259
    [26] Bauer A, Luetjohann J, Hanschen F S, et al. Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS)[J]. Food Chemistry,2018,244 :292-303. doi: 10.1016/j.foodchem.2017.09.131
    [27] Zhang Y H, Lei H B, Tao J F, et al. An integrated approach for structural characterization of Gui Ling Ji by traveling wave ion mobility mass spectrometry and molecular network[J]. RSC Advances,2021,11 (26):15546-15556. doi: 10.1039/D1RA01834E
    [28] Gao Y, Wu Y, Liu S, et al. A strategy to comprehensively and quickly identify the chemical constituents in Platycodi Radix by ultra-performance liquid chromatography coupled with traveling wave ion mobility quadrupole time-of-flight mass spectrometry[J]. Journal of Separation Science,2021,44 (3):691-708. doi: 10.1002/jssc.202000913
    [29] Cheng T F, Ye J, Li H L, et al. Hybrid multidimensional data acquisition and data processing strategy for comprehensive characterization of known, unknown and isomeric compounds from the compound Dan Zhi Tablet by UPLC-TWIMS-QTOFMS[J]. RSC Advances,2019,9 (16):8714-8727. doi: 10.1039/C8RA10100K
    [30] Williams J P, Brown J M, Campuzano I, et al. Identifying drugmetallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-MS)[J]. Chemical Communications,2010,46 (30):5458-5460. doi: 10.1039/c0cc00358a
    [31] Martin E M, Kondrat F D L, Stewart A J, et al. Native electrospray mass spectrometry approaches to probe the interaction between zinc and an anti-angiogenic peptide from histidine-rich glycoprotein[J]. Scientific Reports,2018,8 (1):1-13.
    [32] Lermyte F, Konijnenberg A, Williams J P, et al. ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument[J]. Journal of the American Society for Mass Spectrometry,2014,25 (3):343-350. doi: 10.1007/s13361-013-0798-3
    [33] StepWave[EB/OL]. [2012-04-23]. https://www.waters.com/waters/zh_CN/StepWave/nav.htm?cid=134673601.
    [34] Giles K, Wildgoose J L, Pringle S D, et al. Design and utility of a multi-pass cyclic ion mobility separator[C]. ASMS Conference on Mass Spectrometry and Allied Topics, 2014.
    [35] Giles K, Ujma J, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system[J]. Analytical Chemistry,2019,91 (13):8564-8573. doi: 10.1021/acs.analchem.9b01838
    [36] Sisley E K, Ujma J, Palmer M, et al. LESA cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections[J]. Analytical Chemistry,2020,92 (9):6321-6326. doi: 10.1021/acs.analchem.9b05169
    [37] Eldrid C, Ujma J, Kalfas S, et al. Gas phase stability of protein ions in a cyclic ion mobility spectrometry traveling wave device[J]. Analytical Chemistry,2019,91 (12):7554-7561. doi: 10.1021/acs.analchem.8b05641
    [38] Eldrid C, Ben-Younis A, Ujma J, et al. Cyclic ion mobility-collision activation experiments elucidate protein behavior in the gas phase[J]. Journal of the American Society for Mass Spectrometry,2021,32 (6):1545-1552. doi: 10.1021/jasms.1c00018
    [39] Cho E, Riches E, Palmer M, et al. Isolation of crude oil peaks differing by m/z~0.1 via tandem mass spectrometry using a cyclic ion mobility-mass spectrometer[J]. Analytical Chemistry,2019,91 (22):14268-14274. doi: 10.1021/acs.analchem.9b02255
    [40] Rüger C P, Le Maître J, Maillard J, et al. Exploring complex mixtures by cyclic ion mobility high-resolution mass spectrometry: application toward petroleum[J]. Analytical Chemistry,2021,93 (14):5872-5881. doi: 10.1021/acs.analchem.1c00222
    [41] Garimella S V B, Ibrahim Y M, Webb I K, et al. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM)[J]. Journal of the American Society for Mass Spectrometry,2014,25 (11):1890-1896. doi: 10.1007/s13361-014-0976-y
    [42] Tolmachev A V, Webb I K, Ibrahim Y M, et al. Characterization of ion dynamics in structures for lossless ion manipulations[J]. Analytical Chemistry,2014,86 (18):9162-9168. doi: 10.1021/ac502054p
    [43] Webb I K, Garimella S V B, Tolmachev A V, et al. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations[J]. Analytical Chemistry,2014,86 (19):9632-9637. doi: 10.1021/ac502139e
    [44] Webb I K, Garimella S V B, Tolmachev A V, et al. Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry[J]. Analytical Chemistry,2014,86 (18):9169-9176. doi: 10.1021/ac502055e
    [45] Zhang X Y, Garimella S V B, Prost S A, et al. Ion trapping, storage, and ejection in structures for lossless ion manipulations[J]. Analytical Chemistry,2015,87 (12):6010-6016. doi: 10.1021/acs.analchem.5b00214
    [46] Chen T C, Ibrahim Y M, Webb I K, et al. Mobility-selected ion trapping and enrichment using structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (3):1728-1733. doi: 10.1021/acs.analchem.5b03910
    [47] Hamid A M, Ibrahim Y M, Garimella S V B, et al. Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations[J]. Analytical Chemistry,2015,87 (22):11301-11308. doi: 10.1021/acs.analchem.5b02481
    [48] Hamid A M, Garimella S V B, Ibrahim Y M, et al. Achieving high resolution ion mobility separations using traveling waves in compact multiturn structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (18):8949-8956. doi: 10.1021/acs.analchem.6b01914
    [49] Deng L L, Ibrahim Y M, Hamid A M, et al. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module[J]. Analytical Chemistry,2016,88 (18):8957-8964. doi: 10.1021/acs.analchem.6b01915
    [50] Wormwood Moser K L, Van Aken G, DeBord D, et al. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics[J]. Analytica Chimica Acta,2021,1146 :77-87. doi: 10.1016/j.aca.2020.12.022
    [51] Wojcik R, Webb I, Deng L L, et al. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations[J]. International Journal of Molecular Sciences,2017,18 (1):183. doi: 10.3390/ijms18010183
    [52] Nagy G, Chouinard C D, Attah I K, et al. Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations[J]. Electrophoresis,2018,39 (24):3148-3155. doi: 10.1002/elps.201800294
    [53] Nagy G, Attah I K, Garimella S V B, et al. Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations[J]. Chemical Communications,2018,54 (83):11701-11704. doi: 10.1039/C8CC06966B
    [54] Nagy G, Kedia K, Attah I K, et al. Separation of β-amyloid tryptic peptide species with isomerized and racemized L-asparagin residues with ion mobility in structures for lossless ion manipulations[J]. Analytical Chemistry,2019,91 (7):4374-4380. doi: 10.1021/acs.analchem.8b04696
    [55] Garimella S V B, Hamid A M, Deng L L, et al. Squeezing of ion populations and peaks in traveling wave ion mobility separations and structures for lossless ion manipulations using compression ratio ion mobility programming[J]. Analytical Chemistry,2016,88 (23):11877-11885. doi: 10.1021/acs.analchem.6b03660
    [56] Deng L L, Garimella S V B, Hamid A M, et al. Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass spectrometry using traveling waves in structures for lossless ion manipulations (SLIM)[J]. Analytical Chemistry,2017,89 (12):6432-6439. doi: 10.1021/acs.analchem.7b00189
    [57] Hollerbach A L, Conant C R, Nagy G, et al. Implementation of ion mobility spectrometry-based separations in structures for lossless ion manipulations (SLIM)[M]// Biomedical Engineering Technologies. New York: Humana, 2022: 453-469.
    [58] Deng L L, Ibrahim Y M, Garimella S V B, et al. Greatly increasing trapped ion populations for mobility separations using traveling waves in structures for lossless ion manipulations[J]. Analytical Chemistry,2016,88 (20):10143-10150. doi: 10.1021/acs.analchem.6b02678
    [59] Li A L, Nagy G, Conant C R, et al. Ion mobility spectrometry with high ion utilization efficiency using traveling wave-based structures for lossless ion manipulations[J]. Analytical Chemistry,2020,92 (22):14930-14938. doi: 10.1021/acs.analchem.0c02100
    [60] Deng L L, LaForest J M, Anderson G A, et al. Integration of a high duty cycle SLIM mobility filter with a triple quadrupole mass spectrometer for targeted quantitative analysis[J]. International Journal of Mass Spectrometry,2022,475 :116832. doi: 10.1016/j.ijms.2022.116832
    [61] Ibrahim Y M, Hamid A M, Cox J T, et al. Ion elevators and escalators in multilevel structures for lossless ion manipulations[J]. Analytical Chemistry,2017,89 (3):1972-1977. doi: 10.1021/acs.analchem.6b04500
    [62] Hollerbach A L, Norheim R V, Kwantwi-Barima P, et al. A miniature multilevel structures for lossless ion manipulations ion mobility spectrometer with wide mobility range separation capabilities[J]. Analytical Chemistry,2022,94 (4):2180-2188. doi: 10.1021/acs.analchem.1c04700
    [63] Li A L, Conant C R, Zheng X Y, et al. Assessing collision cross section calibration strategies for traveling wave-based ion mobility separations in structures for lossless ion manipulations[J]. Analytical Chemistry,2020,92 (22):14976-14982. doi: 10.1021/acs.analchem.0c02829
    [64] Mortensen D N, Susa A C, Williams E R. Collisional cross-sections with T-wave ion mobility spectrometry without experimental calibration[J]. Journal of the American Society for Mass Spectrometry,2017,28 (7):1282-1292. doi: 10.1007/s13361-017-1669-0
    [65] Richardson K, Langridge D, Dixit S M, et al. An improved calibration approach for traveling wave ion mobility spectrometry: robust, high-precision collision cross sections[J]. Analytical Chemistry,2021,93 (7):3542-3550. doi: 10.1021/acs.analchem.0c04948
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  21
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 录用日期:  2023-07-13
  • 修回日期:  2023-07-13
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回