Application Progress of In Situ High Resolution Detection Technology of Element Distribution Characteristics in Micro-areas
-
摘要: 样品中各元素原位、微区、高分辨率的空间分布特征具有现实而重要的研究意义. 在生物样品中,元素原位空间分布特征可以作为生理过程的指示指标,揭示代谢途径,并可反映周围环境特征对生物体的影响方式. 在地质样品中,元素原位空间分布特征可以作为矿产评估依据,也可作为研究环境地球化学变化过程的重要指标. 目前常用的几种微区元素原位分布特征测试技术包括:微区XRF技术(μXRF)、同步辐射技术(SR)、能谱电子显微镜联用技术(EM-EDS)、电子探针技术(EP)、激光剥蚀联用电感耦合等离子体质谱技术(LA-ICP-MS)、激光诱导击穿等离子发射光谱技术(LIBS)等. 根据其测试原理,这些技术在是否无损、是否定量检测、适合样品类型和大小、前处理方式复杂程度、检出限高低、分辨率大小等方面存在差异. 介绍和总结了当前主流的微区原位元素分布检测技术,分析比较了各种技术的优缺点及其适用的样品类型和应用范围,对标准样品的选择、数据校准处理及可视化成图等方案进行初步探讨,为相关的科研分析工作提供技术参考.Abstract: The in situ, micro-area and high-resolution spatial distribution characteristics of elements in the samples are of practical and important research significance. In biological samples, the in situ spatial distribution characteristics of elements can be used as indicators of physiological processes, reveal metabolic pathways, and reflect the ways in which environmental characteristics affect organisms. In geological samples, the in situ spatial distribution characteristics of elements can be used as a basis for mineral evaluation and an important indicator for studying the process of environmental geochemical changes. At present, several commonly used techniques for measuring the in situ distribution characteristics of elements in micro-areas include: micro X-ray fluorescence spectrometry (μXRF), synchrotron radiation technology (SR), electron microscopy-energy dispersive spectrometry (EM-EDS), electron probe technology (EP), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), laser induced breakdown plasma emission spectroscopy (LIBS), etc. Based on the principle of testing samples, these technologies differ in many aspects such as non-destructive testing, quantitative testing, suitable sample type and size, complexity of pre-treatment methods, detection limits and resolution, and so on. The current mainstream of the micro-area in situ element distribution detection techniques were introduced and summarized, the advantages and disadvantages of various techniques and their applicable sample types and application ranges were analyzed and compared. The selection of standard samples, data calibration and processing and visualization into maps were discussed for the first time, which provides a technical reference for related scientific research and analysis work.
-
Key words:
- micro-area /
- element distribution /
- biological sample /
- geological sample
-
图 6 LA-ICP-MS技术研究深海结核样品中微量及稀土元素分布特征
(a)扫描结核样品全貌及选取的扫描区域,(b)结核样品中微量元素分布特征(单位:g/kg),(c)结核样品中稀土元素分布特征(单位:mg/kg)
Figure 6. Distribution characteristics of trace and rare earth elements in deep-sea nodule samples by LA-ICP-MS
(a) nodule sample and selected scanning area, (b) distribution characteristics of trace elements in nodule samples (unit: g/kg), (c) distribution characteristics of rare earth elements in nodule samples (unit: mg/kg)
表 1 微区检测技术特点对比
Table 1. Comparison of micro-area detection technology
检测方法 样品前处理 样品大小 空间分辨率 适合元素种类 检出限 是否定量
检测是否损伤
样品微区XRF 简单,对高含水量的样品进行脱水处理即可 毫米到厘米级最大可达数十厘米 一般在5~10微米以上 通常Na~U,无法检测轻原子序数的元素 一般在几十到几百mg/kg以上量级,仅适合检测高含量元素 定性检测及半定量检测 无损 同步辐射 简单,对高含水量的样品进行脱水处理即可 微米至厘米级 通常在微米级,搭载光学组件后可达纳米级 原子序数Na以上 mg/kg级至亚mg/kg级 定性检测及半定量检测 无损 能谱电镜
联用需喷金膜或碳膜,样品平整度要求高 亚微米级别 纳米级别至亚微米级别 通常Na~U,无法准确检测轻原子序数的元素 一般在几十到几百mg/kg以上量级 定性检测及半定量检测 有损 电子探针 需喷金膜或碳膜,样品平整度要求高 毫米级别 1~2微米或更小 当含量处于亚百分比级别时,可测C、O等轻原子序数元素 一般在几十到几百mg/kg以上量级 相对准确的半定量检测 有损 LA-ICP-MS 主要采用以环氧树脂为载体的样品制备方式,样品平整度要求高 微米到厘米级 理论可达1~2微米,由于分馏效应等因素通常取30~50微米 质谱检测器可以检测几乎全部的金属元素,包括低原子序数的金属元素,但检测卤族元素时存在困难 mg/kg级 准确的定量检测 有损 LIBS 简单,对高含水量的样品进行脱水处理即可 毫米到厘米级 数十微米级至毫米级 检测范围广,除常规元素外还可检测C、N等轻原子序数元素 一般在几十到几百mg/kg以上量级 定性检测及半定量检测 有损 -
[1] 陆超华, 林燕棠, 杨美兰. 广东省海域经济鱼类的重金属污染及其评价[J]. 海洋环境科学,1991,10(2):46-50. [2] 高淑英, 邹栋梁. 湄洲湾生物体内重金属含量及其评价[J]. 海洋环境科学,1994,13(1):39-45. [3] Morgan A J, Kille P, Bennett A, et al. Pb and Zn imaging and in situ speciation at the geogenic/biogenic interface in sentinel earthworms using electron microprobe and synchrotron micro-focus X-ray spectroscopy[J]. Environmental Pollution,2013,173 :68-74. doi: 10.1016/j.envpol.2012.10.001 [4] Langdon C J, Winters C, StÜrzenbaum S R, et al. Ligand arsenic complexation and immunoperoxidase detection of metallothionein in the earthworm lumbricus rubellus inhabiting arsenic-rich soil[J]. Environmental Science & Technology,2005,39 (7):2042-2048. [5] Yu G, Jiang P, Fu X, et al. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn: A long-term field study[J]. Environmental Pollution, 2020, 266: 115408. [6] 梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铅锌矿石鉴定上的应用[J]. 岩矿测试,2013,32(6):897-902LIANG Shuting, LIU Yuchun, LIU Tian, et al. Application of in situ micro-X-ray fluorescence spectrometry in the identification of lead-zinc ore[J]. Rock and Mineral Analysis,2013,32 (6):897-902. [7] 杨海, 葛良全, 谷懿, 等. 原位微区X射线荧光分析在矿物学研究中的应用[J]. 光谱学与光谱分析,2013,33(11):3137-3141YANG Hai, GE Liangquan, GU Yi, et al. Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy[J]. Spectroscopy and Spectral Analysis,2013,33 (11):3137-3141. [8] 刘光鼎. 海洋国土与海洋矿产资源[J]. 国土资源,2001(2):22-24, 6. [9] 陈新明, 高宇清, 吴鸿云, 等. 海底热液硫化物的开发现状[J]. 矿业研究与开发,2008,28(5):1-5, 19CHEN Xinming, GAO Yuqing, WU Hongyun, et al. Current investigation and exploitation of seafloor hydrothermal sulfide[J]. Mining Research and Development,2008,28 (5):1-5, 19. [10] 林梵宇, 尹希杰, 梁毓娜, 等. 微区XRF技术分析无机元素在植物中的原位分布[J]. 植物学报,2020,55(6):733-739LIN Fanyu, YIN Xijie, LIANG Yuna, et al. Analysis of in situ distribution of inorganic elements in plants by micro-XRF[J]. Bulletin of Botany,2020,55 (6):733-739. [11] 林梵宇, 尹希杰, 黄威, 等. 利用微区XRF技术的大洋固体矿产成分快速无损检测[J]. 海洋地质与第四纪地质,2021,41(1):223-232LIN Fanyu, YIN Xijie, HUANG Wei, et al. Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals[J]. Marine Geology & Quaternary Geology,2021,41 (1):223-232. [12] 林梵宇, 尹希杰, 郑新庆, 等. 基于微区XRF技术的海洋生物元素快速无损检测[J]. 海洋科学进展,2021,39(4):626-635LIN Fanyu, YIN Xijie, ZHENG Xinqing, et al. Application of micro-XRF technology in rapid non-destrutive testing of marine biological elements[J]. Advances in Marine Science,2021,39 (4):626-635. [13] 林梵宇, 尹希杰, 黄杰超, 等. 利用微区XRF技术测定地质样品中元素含量研究[J]. 矿物岩石,2021,41(4):59-67LIN Fanyu, YIN Xijie, HUANG Jiechao, et al. Determination of element content in geological samples by micro-XRF technique[J]. Journal of Mineralogy and Petrology,2021,41 (4):59-67. [14] 罗立强, 沈亚婷, 马艳红, 等. 微区X射线荧光光谱仪研制及元素生物地球化学动态分布过程研究[J]. 光谱学与光谱分析,2017,37(4):1003-1008LUO Liqiang, SHEN Yating, MA Yanhong, et al. Development of laboratory microscopic X-ray fluorescence spectrometer and the study on spatial distribution of elements in biofilms and maize seeds[J]. Spectroscopy and Spectral Analysis,2017,37 (4):1003-1008. [15] Harvey M A, Erskine P D, Harris H H, et al. Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia[J]. Metallomics,2020,12 (4):514-527. doi: 10.1039/c9mt00244h [16] 程琳, 丁训良, 刘志国, 等. 一种新型的微束X射线荧光谱仪及其在考古学中的应用[J]. 物理学报,2007,56(12):6894-6898 doi: 10.3321/j.issn:1000-3290.2007.12.018CHENG Lin, DING Xunliang, LIU Zhiguo, et al. A newly micro-X-ray fluorescence spectrometer and applications for non-destructive analysis of archaeological objects[J]. Acta Physica Sinica,2007,56 (12):6894-6898. doi: 10.3321/j.issn:1000-3290.2007.12.018 [17] Mantler M, Schreiner M. X-ray fluorescence spectrometry in art and archaeology[J]. X-Ray Spectrometry,2000,29 (1):3-17. doi: 10.1002/(SICI)1097-4539(200001/02)29:1<3::AID-XRS398>3.0.CO;2-O [18] Uhlir K, Griesser M, Buzanich G, et al. Applications of a new portable (micro) XRF instrument having low-Z elements determination capability in the field of works of art[J]. X-Ray Spectrometry,2008,37 (4):450-457. doi: 10.1002/xrs.1074 [19] 张启燕, 刘晓, 杨玠, 等. 微区X射线荧光成像技术在岩心分析中的应用[J]. 光谱学与光谱分析,2022,42(7):2200-2206 doi: 10.3964/j.issn.1000-0593(2022)07-2200-07ZHANG Qiyan, LIU Xiao, YANG Jie, et al. Application of micro X-ray fluorescence imaging technology in core analysis[J]. Spectroscopy and Spectral Analysis,2022,42 (7):2200-2206. doi: 10.3964/j.issn.1000-0593(2022)07-2200-07 [20] Li J H, Pei R, Teng F F. Micro-XRF study of the troodontid dinosaur jianianhualong tengi reveals new biological and taphonomical signals[J]. Atomic Spectroscopy,2020,41 (6):1-11. doi: 10.46770/AS.2021.01.001 [21] 袁静, 罗立强. 同步辐射微区X射线荧光和吸收谱技术在大气、土壤和动植物分析中的应用[J]. 核技术,2014,37(8):080101YUAN Jing, LUO Liqiang. Synchrotron μ-XRF and XAFS in element distribution and speciation of air, soil and biological samples[J]. Nuclear Techniques,2014,37 (8):080101. [22] Cozzi F, Gržinić G, Cozzutto S, et al. Dimensional characterization of selected elements in airborne PM10 samples using μ-SRXRF[J]. X-Ray Spectrometry,2012,41 (1):34-41. doi: 10.1002/xrs.1377 [23] Walker S R, Jamieson H E, Rasmussen P E. Application of synchrotron microprobe methods to solid-phase speciation of metals and metalloids in house dust[J]. Environmental Science & Technology,2011,45 (19):8233-8240. [24] Strawn D G, Baker L L. Speciation of Cu in a contaminated agricultural soil measured by XAFS, μ-XAFS, and μ-XRF[J]. Environmental Science & Technology,2008,42 (1):37-42. [25] 陈同斌, 黄泽春, 黄宇营, 等. 砷超富集植物中元素的微区分布及其与砷富集的关系[J]. 科学通报,2003,48(11):1163-1168 doi: 10.3321/j.issn:0023-074X.2003.11.010CHEN Tongbin, HUANG Zechun, HUANG Yuying, et al. Microdistribution of elements in arsenic hyperaccumulator plants and its relationship with arsenic enrichment[J]. Chinese Science Bulletin,2003,48 (11):1163-1168. doi: 10.3321/j.issn:0023-074X.2003.11.010 [26] 沈亚婷. 原位微区同步辐射X射线荧光和近边吸收谱研究拟南芥幼苗及根际土壤中铅分布与形态特征[J]. 光谱学与光谱分析,2014,34(3):818-822SHEN Yating. Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure[J]. Spectroscopy and Spectral Analysis,2014,34 (3):818-822. [27] Morgan A J, Mosselmans J F W, Charnock J M, et al. In situ metal imaging and Zn ligand-speciation in a soil-dwelling sentinel: complementary electron microprobe and synchrotron microbeam X-ray analyses[J]. Environmental Science & Technology,2013,47 (2):1073-1081. [28] Kato N, Yamada M, Ojima J, et al. Analytical method using SEM-EDS for metal elements present in particulate matter generated from stainless steel flux-cored arc welding process[J]. Journal of Hazardous Materials,2022,424 :127412. doi: 10.1016/j.jhazmat.2021.127412 [29] Tirkey A, Upadhyay L S B. Microplastics: an overview on separation, identification and characterization of microplastics[J]. Marine Pollution Bulletin,2021,170 :112604. doi: 10.1016/j.marpolbul.2021.112604 [30] Ent A, Przybyłowicz W J, Jonge M D, et al. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants[J]. New Phytologist,2018,218 (2):432-452. doi: 10.1111/nph.14810 [31] 李小犁. 电子探针分析锆石Hf和Ti含量的结果意义与技术优势[J]. 岩矿测试,2023,42(1):89-101 doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301006LI Xiaoli. Electron probe microanalysis of Hf and Ti in zircon: significance and advantage[J]. Rock and Mineral Analysis,2023,42 (1):89-101. doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301006 [32] Shirai K, Schöne B R, Miyaji T, et al. Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale[J]. Geochimica et Cosmochimica Acta,2014,126 :307-320. doi: 10.1016/j.gca.2013.10.050 [33] 于凤云, 刘晓英, 李春艳. 电子探针定量分析影响因素浅析[J]. 科技与创新,2021(21):101-104YU Fengyun, LIU Xiaoying, LI Chunyan. Analysis on the influencing factors of quantitative analysis by electron probe[J]. Science and Technology & Innovation,2021 (21):101-104. [34] 胡瑶瑶, 王浩铮, 侯玉杨, 等. 基于电子探针面扫描定量化的石英闪长岩微区成分分析[J]. 岩矿测试,2022,41(2):260-271HU Yaoyao, WANG Haozheng, HOU Yuyang, et al. A method for estimating micro-area composition of quartz-diorite based on quantitative mapping of electron probe microanalysis[J]. Rock and Mineral Analysis,2022,41 (2):260-271. [35] 陈玉红, 王海舟. 激光剥蚀-电感耦合等离子体质谱法中元素分馏效应的影响因素及其评价[J]. 冶金分析,2008,28(8):1-6 doi: 10.13228/j.issn.1000-7571.2008.08.002CHEN Yuhong, WANG Haizhou. Influence factors and evaluation of elemental fractionation in laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis,2008,28 (8):1-6. doi: 10.13228/j.issn.1000-7571.2008.08.002 [36] 吴石头, 王亚平, 许春雪, 等. 193 nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J]. 分析化学,2016,44(7):1035-1041 doi: 10.1016/S1872-2040(16)60943-XWU Shitou, WANG Yaping, XU Chunxue, et al. Elemental fractionation studies of 193 nm ArF excimer laser ablation system at high space resolution mode[J]. Chinese Journal of Analytical Chemistry,2016,44 (7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X [37] 李青, 张国霞, 陈奕睿, 等. 激光剥蚀电感耦合等离子体质谱法中生物样品的元素分馏效应研究[J]. 分析化学,2017,45(6):868-873LI Qing, ZHANG Guoxia, CHEN Yirui, et al. Elemental fractionation studies of biological samples using laser ablation inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2017,45 (6):868-873. [38] Humayun M, Davis F A, Hirschmann M M. Major element analysis of natural silicates by laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2010,25 (7):998-1005. doi: 10.1039/c001391a [39] Zhu L Y, Liu Y S, Hu Z C, et al. Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic vessel heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research,2013,37 (2):207-229. doi: 10.1111/j.1751-908X.2012.00181.x [40] 柳小明, 高山, 第五春容, 等. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报,2007,52(2):228-235 doi: 10.1360/csb2007-52-2-228LIU Xiaoming, GAO Shan, DIWU Chunrong, et al. Simultaneous determination of LA-ICP-MS U-Pb age and trace elements in the in situ micro-area of 20 μm small spot beam of single zircon[J]. Chinese Science Bulletin,2007,52 (2):228-235. doi: 10.1360/csb2007-52-2-228 [41] 薛婷, 孙晓明, 张美, 等. 西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定[J]. 岩石学报,2008,24(10):2423-2432XUE Ting, SUN Xiao-ming, ZHANG Mei, et al. In-situ LA-ICPMS analysis of rare earth elements of ferromanganese crusts from West Pacific Ocean seamounts[J]. Acta Petrologica Sinica,2008,24 (10):2423-2432. [42] Balcaen L I L, Lenaerts J, Moens L, et al. Application of laser ablation inductively coupled plasma (dynamic reaction cell) mass spectrometry for depth profiling analysis of high-tech industrial materials[J]. Journal of Analytical Atomic Spectrometry,2005,20 (5):417-423. doi: 10.1039/b412287a [43] Karasev A V, Suito H. Analysis of composition and size distribution of inclusions in Fe-10Mass%Ni alloy deoxidized by Al and Mg using laser ablation ICP mass spectrometry[J]. ISIJ International,2004,44 (2):364-371. doi: 10.2355/isijinternational.44.364 [44] 祁海, 马冲先, 张培志, 等. 原位微区分析标准样品制备技术的研究进展[J]. 理化检验-化学分册,2020,56(8):938-944QI Hai, MA Chongxian, ZHANG Peizhi, et al. Reasearch progress of preparation techniques of reference materials for in-situ micro-area analysis[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis),2020,56 (8):938-944. [45] Limbeck A, Brunnbauer L, Lohninger H, et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta,2021,1147 :72-98. doi: 10.1016/j.aca.2020.12.054 [46] Jantzi S C, Motto-Ros V, Trichard F, et al. Sample treatment and preparation for laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2016,115 :52-63. doi: 10.1016/j.sab.2015.11.002 [47] Arantes de Carvalho G G, Bueno Guerra M B, Adame A, et al. Recent advances in LIBS and XRF for the analysis of plants[J]. Journal of Analytical Atomic Spectrometry,2018,33 (6):919-944. doi: 10.1039/C7JA00293A [48] Martinez M, Bayne C, Aiello D, et al. Multi-elemental matrix-matched calcium hydroxyapatite reference materials for laser ablation: evaluation on teeth by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2019,159 :105650. doi: 10.1016/j.sab.2019.105650 [49] Singh V K, Rai A K, Rai P K, et al. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy[J]. Lasers in Medical Science,2009,24 (5):749-759. doi: 10.1007/s10103-008-0635-2 [50] Kaiser J, Galiová M, Novotný K, et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2009,64 (1):67-73. doi: 10.1016/j.sab.2008.10.040 [51] Sancey L, Motto-Ros V, Kotb S, et al. Laser-induced breakdown spectroscopy: a new approach for nanoparticle’s mapping and quantification in organ tissue[J]. Journal of Visualized Experiments,2014 (88):51353. [52] 何强, 万雄, 王泓鹏, 等. 基于微区LIBS菊石化石中钙元素分布的研究[J]. 光谱学与光谱分析,2019,39(9):2917-2921HE Qiang, WAN Xiong, WANG Hongpeng, et al. Study on the distribution of Ca elements in ammonite stones based on micro LIBS[J]. Spectroscopy and Spectral Analysis,2019,39 (9):2917-2921. [53] Modlitbova P, Porizka P, Stritezska S, et al. Detail investigation of toxicity, bioaccumulation, and translocation of Cd-based quantum dots and Cd salt in white mustard[J]. Chemosphere:Environmental toxicology and risk assessment,2020,251 :126174. [54] Horst A, Renpenning J, Richnow H H, et al. Compound specific stable chlorine isotopic analysis of volatile aliphatic compounds using gas chromatography hyphenated with multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Chemistry,2017,89 (17):9131-9138. doi: 10.1021/acs.analchem.7b01875 [55] Rosenberg Y O, Meshoulam A, Said-Ahmad W, et al. Study of thermal maturation processes of sulfur-rich source rock using compound specific sulfur isotope analysis[J]. Organic Geochemistry,2017,112 :59-74. doi: 10.1016/j.orggeochem.2017.06.005 [56] 蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报,2021,42(5):623-640JIANG Shaoyong, CHEN Wei, ZHAO Kuidong, et al. In situ micro-analysis of isotopic compositions of solid minerals using LA-(MC)-ICP-MS methods and thei r applications[J]. Journal of Chinese Mass Spectrometry Society,2021,42 (5):623-640. [57] Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Applied Surface Science,2011,257 (10):4669-4677. doi: 10.1016/j.apsusc.2010.12.120 [58] 张录平, 李晖, 刘亚平. 俄歇电子能谱仪在材料分析中的应用[J]. 分析仪器,2009(4):14-17ZHANG Luping, LI Hui, LIU Yaping. Applications of Auger electron spectrometer in material analysis[J]. Analytical Instrumentation,2009 (4):14-17. [59] 王松, 高钰涯, 王军, 等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报,2021,42(5):641-655WANG Song, GAO Yuya, WANG Jun, et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society,2021,42 (5):641-655. [60] 吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试,2015,34(5):503-511WU Shitou, WANG Yaping, XU Chunxue. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis,2015,34 (5):503-511. [61] 张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报,2019,35(1):261-274 doi: 10.18654/1000-0569/2019.01.21ZHANG Di, CHEN Yi, MAO Qian, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica,2019,35 (1):261-274. doi: 10.18654/1000-0569/2019.01.21 [62] Martinez M, Baudelet M. Calibration strategies for elemental analysis of biological samples by LA-ICP-MS and LIBS-A review[J]. Analytical and Bioanalytical Chemistry,2020,412 (1):27-36. doi: 10.1007/s00216-019-02195-1 [63] 朱碧, 朱志勇, 吕苗, 等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试,2017,36(1):14-21 doi: 10.15898/j.cnki.11-2131/td.2017.01.003ZHU Bi, ZHU Zhiyong, LV Miao, et al. Application of iolite in data reduction of laser ablation-inductively coupled plasma-mass spectrometry line-scan analysis[J]. Rock and Mineral Analysis,2017,36 (1):14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003 [64] Tian S K, Lu L L, Yang X E, et al. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii[J]. New Phytologist,2009,182 (1):116-126. doi: 10.1111/j.1469-8137.2008.02740.x [65] Yi L T, Qin M, Wang K, et al. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis[J]. Applied Physics A,2016,122 (9):856. doi: 10.1007/s00339-016-0393-0 [66] Li J W, Li L, Bai S J, et al. Geochemical and molecular characteristics of ferromanganese deposits and surrounding sediments in the Mariana Trench: an Implication for the geochemical Mn cycle in sedimentary environments of the trench zone[J]. Geochimica et Cosmochimica Acta,2021,310 :155-168. doi: 10.1016/j.gca.2021.07.018 [67] 李海洋, 郭盛, 严辉, 等. ICP-MS结合微区XRF法分析海带中无机元素含量及分布[J]. 中国中药杂志,2022,47(2):444-452LI Haiyang, GUO Sheng, YAN Hui, et al. Content and distribution of inorganic elements in Laminaria japonica based on ICP-MS and Micro-XRF[J]. China Journal of Chinese Materia Medica,2022,47 (2):444-452. [68] 吴石头, 王亚平, 詹秀春, 等. CGSG 系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J]. 岩矿测试,2016,35(6):612-620WU Shitou, WANG Yaping, ZHAN Xiuchun, et al. Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J]. Rock and Mineral Analysis,2016,35 (6):612-620. -