扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

便携式毒品传感器的应用与研究进展

杨春

杨春. 便携式毒品传感器的应用与研究进展[J]. 分析测试技术与仪器, 2023, 29(3): 261-271. doi: 10.16495/j.1006-3757.2023.03.003
引用本文: 杨春. 便携式毒品传感器的应用与研究进展[J]. 分析测试技术与仪器, 2023, 29(3): 261-271. doi: 10.16495/j.1006-3757.2023.03.003
YANG Chun. Application and Research Progress of Portable Sensors for Drugs[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 261-271. doi: 10.16495/j.1006-3757.2023.03.003
Citation: YANG Chun. Application and Research Progress of Portable Sensors for Drugs[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 261-271. doi: 10.16495/j.1006-3757.2023.03.003

便携式毒品传感器的应用与研究进展

doi: 10.16495/j.1006-3757.2023.03.003
详细信息
    作者简介:

    杨春(1992−),女,助理工程师,主要研究方向:毒品检测和毒品特征分析工作,E-mail:yangchun9205@163.com

  • 中图分类号: O657

Application and Research Progress of Portable Sensors for Drugs

  • 摘要: 在毒品检测方面,常规实验室检测方法已日趋成熟. 现存的实验室分析方法已不能满足毒品现场快速侦测需求,亟待发展便携式毒品探测技术及设备. 在一些快速检测手段中,便携式设备的应用已经普及并且被不断深入研究. 传感器作为一种具有快速识别目标物质的装置,在毒品检测中可以对一些可疑物品进行快速甄别. 随着毒品种类的变化,以及毒品类型的不断更新迭代,对传感器的检测要求也随之增加,从而不同种类和功能的传感器也应运而生. 鉴于传感器具备易于操作、成本较低、快速分析等特点,在禁毒领域尤其是现场检测方面,便携式毒品传感器的应用会成为现场快速检测的重要组成部分. 近年来,随着人们研究的需求化导向及研究内容的不断深入,一些新型毒品探测技术、材料及设备被成功开发. 随着实测信息的反馈及设备的不断优化,便携式毒品探测设备将成为打击毒品犯罪的有力手段.
  • 图  1  毒品分子结构

    Figure  1.  Molecular structures of drugs

    图  2  传感器对不同浓度海洛因溶液的电化学发光响应图[3]

    Figure  2.  ECL responses to different concentrations of Heroin [3]

    图  3  (a)ECL传感器的制造工艺方案及其(b)对可卡因的检测[4]

    Figure  3.  (a) Scheme of fabrication process for ECL aptasensor and (b) ECL aptasensor for detection of cocaine[4]

    图  4  东莨菪碱ECL释放的氧化脱烷基作用机制[5]

    Figure  4.  Mechanism of oxidative N-dealkylation responsible for ECL emission of scopolamine [5]

    图  5  电化学发光适配体传感器[6]

    Figure  5.  Electrochemiluminescence aptamer sensor[6]

    图  6  SPR光谱仪及配套仪器结构组成示意图[7]

    Figure  6.  Structural composition diagram of SPR spectrometer and supporting instruments[7]

    图  7  荧光的系统浓度效应[8]

    Figure  7.  Systematic concentration effect of fluorescence[8]

    图  8  共轭聚合物的合成路线[9]

    Figure  8.  Synthetic route of conjugated polymers[9]

    图  9  PMI-CBH膜概念感测装置[10]

    Figure  9.  Conceptual sensory device of PMI-CBH-based film[10]

    图  10  碳硼烷-苝酰亚胺(PBI-CB)传感分子及传感装置[11]

    Figure  10.  Structural of PBI-CB and sensing device[11]

    图  11  基于二硫化钼的金纳米颗粒比色法测定可卡因[12]

    Figure  11.  Colorimetric determination of cocaine by gold nanoparticles based on molybdenum disulfide[12]

    图  12  在过滤步骤后15 min获得的用于测试药物的膜的图像及其各自的反射光谱[14](苯丙胺,AMP;甲基苯丙胺,MA;麻黄碱,EPH;可卡因,COC;东莨菪碱,SCP)

    Figure  12.  Images of membranes used to test drugs and their respective reflectance spectra obtained 15 min after filtration step [14] (amphetamine, AMP; methamphetamine, MA; ephedrine, EPH; cocaine, COC; scopolamine, SCP)

    图  13  汗液中药物分子无标记SERS检测的可穿戴式SERS贴片传感器示意图[15]

    Figure  13.  Schematic illustration of wearable SERS patch sensor describing label-free SERS detection of drug molecules in sweat[15]

    图  14  Au@Ag在玻璃纳米纤维纸(GNFP)SERS基板上的自组装示意图[16]

    Figure  14.  Schematic illustration of self-assembly of Au@Ag on glass nanofibrous paper (GNFP) SERS substrate[16]

    图  15  超声雾化联用快速气相色谱-声表面波传感器[17](a)系统结构图, (b)雾化装置结构图

    Figure  15.  Ultrasonic atomizer combined with gas chromatography-surface acoustic wave sensor[17]

    图  16  可待因适体传感器示意图[18]

    Figure  16.  Schematic diagram of codeine aptasensor[18]

  • [1] 二〇二一年中国毒情形势报告[N]. 中国禁毒报, 2022-06-28(3).
    [2] 王旭达. 利用传感器探究“催化剂对化学反应速率的影响”[J]. 中学化学教学参考,2021(22):59-60.
    [3] 商哲一, 韩超峰, 宋启军. 电化学发光-分子印迹传感器的制备及其在海洛因检测中的应用[J]. 分析化学,2014,42(6):904-908 doi: 10.1016/S1872-2040(14)60748-9

    SHANG Zheyi, HAN Chaofeng, SONG Qijun. Fabrication of molecularly imprinted electrochemiluminescence sensor and its application in heroin detection[J]. Chinese Journal of Analytical Chemistry,2014,42 (6):904-908. doi: 10.1016/S1872-2040(14)60748-9
    [4] 王晓飞, 张婷, 王冰, 等. 基于电化学双共价键法构建可再生高灵敏的电化学发光适体传感器检测可卡因[J]. 电化学,2019,25(2):223-231 doi: 10.13208/j.electrochem.181044

    WANG Xiaofei, ZHANG Ting, WANG Bing, et al. Sensitive and reusable electrogenerated chemiluminescence aptasensor fabricated by electrochemically double covalent coupling method for the detection of cocaine[J]. Journal of Electrochemistry,2019,25 (2):223-231. doi: 10.13208/j.electrochem.181044
    [5] Brown K, Jacquet C, Biscay J, et al. Electrochemiluminescent sensors as a screening strategy for psychoactive substances within biological matrices[J]. Analyst,2020,145 (12):4295-4304. doi: 10.1039/D0AN00846J
    [6] 陈智栋, 曹乾莹, 郑伶俐, 等. 用于检测合成卡西酮MDPV的电化学发光适配体传感器及其制备方法和应用: CN114518355A[P]. 2022-05-20.
    [7] 韩冬雪, 李陈, 牛利. 一种检测苯丙胺类毒品的分子印迹型SPR传感器的制备方法: CN114674787A[P]. 2022-06-28.
    [8] Fan T C, Xu W, Yao J J, et al. Naked-eye visible solid illicit drug detection at picogram level via a multiple-anchored fluorescent probe[J]. ACS Sensors,2016,1 (3):312-317. doi: 10.1021/acssensors.5b00293
    [9] Yu Y G, Xu W, Wang T, et al. More interaction sites and enhanced fluorescence for highly sensitive fluorescence detection of methamphetamine vapor via sidechain terminal functionalization of conjugated polymers[J]. ChemistrySelect,2020,5 (27):8328-8337. doi: 10.1002/slct.202002212
    [10] Ding N N, Liu K, Qi Y Y, et al. Methamphetamine detection enabled by a fluorescent carborane derivative of perylene monoimide in film state[J]. Sensors and Actuators B:Chemical,2021,340 :129964. doi: 10.1016/j.snb.2021.129964
    [11] 刘科. 高发光活性碳硼烷衍生物的合成、光物理性质与薄膜态传感应用[D]. 西安: 陕西师范大学, 2019

    LIU Ke. Synthesis, photophysical properties and application of borane derivatives of high luminescent activated carbon in thin film state sensing[D]. Xi'an: Shaanxi Normal University, 2019
    [12] Gao L, Xiang W W, Deng Z B, et al. Cocaine detection using aptamer and molybdenum disulfide-gold nanoparticle-based sensors[J]. Nanomedicine,2020,15 (4):325-335. doi: 10.2217/nnm-2019-0046
    [13] Thavanathan J, Huang N M, Thong K L. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide[J]. Biosensors and Bioelectronics,2014,55 :91-98. doi: 10.1016/j.bios.2013.11.072
    [14] Jornet-Martínez N, Campíns-Falcó P, Herráez-Hernández R. A colorimetric membrane-based sensor with improved selectivity towards amphetamine[J]. Molecules,2021,26 (21):6713. doi: 10.3390/molecules26216713
    [15] Koh E H, Lee W C, Choi Y J, et al. A wearable surface-enhanced Raman scattering sensor for label-free molecular detection[J]. ACS Applied Materials & Interfaces,2021,13 (2):3024-3032.
    [16] Mao K, Yang Z G, Zhang H, et al. Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology[J]. Water Research,2021,189 :116559. doi: 10.1016/j.watres.2020.116559
    [17] 王莹莹, 董浩, 张冯江, 等. 基于超声雾化联用快速气相色谱-声表面波传感器的氯胺酮检测系统[J]. 传感技术学报,2018,31(4):630-634

    WANG Ying-ying, DONG Hao, ZHANG Fengjiang, et al. On-site detection of ketamine using the ultrasonic atomizer combined with a gas chromatography-surface acoustic wave sensor[J]. Chinese Journal of Sensors and Actuators,2018,31 (4):630-634.
    [18] 杨云慧, 胡蓉, 刘婷知, 等. 基于多孔框架及贵金属纳米材料高灵敏生物传感器的设计与应用研究[J]. 中国科技成果,2022(2):23.
    [19] Bozokalfa G, Akbulut H, Demir B, et al. Polypeptide functional surface for the aptamer immobilization: electrochemical cocaine biosensing[J]. Analytical Chemistry,2016,88 (7):4161-4167. doi: 10.1021/acs.analchem.6b00760
  • 加载中
图(16)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 录用日期:  2023-07-19
  • 修回日期:  2023-06-19
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回