Chiral Membrane Chromatography Study Based on Amylose-tris-(3, 5-dimethylphenylcarbamate)-Polyethersulfone
-
摘要: 以直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)为材料,利用相转化法制备直链淀粉三(3, 5-二甲基苯基氨基甲酸酯)-聚醚砜手性高分子膜. 使用自制的手性膜色谱装置与高效液相色谱仪结合,对手性物质盐酸普萘洛尔和美托洛尔进行了手性膜色谱分离研究. 研究了进样量、流速、膜尺寸对分离效果的影响. 在优选分离效果的条件下,手性膜色谱以纯水为流动相,测得盐酸普萘洛尔的分离因子(α)和分离度(Rs)分别为3.00和0.95,美托洛尔的α和Rs分别为1.65和0.46. 为手性化合物的分离分析开拓了新的途径.Abstract: The chiral membrane of amylose-tris-(3, 5-dimethylphenylcarbamate)-polyethersulfone was prepared by phase conversion method using the amylose-tris-(3, 5-dimethylphenylcarbamate) as the material. The chiral membrane chromatographic separation of propranolol hydrochloride and metoprolol were studied by using the self-made chiral membrane chromatographic device combined with a high performance liquid chromatograph. The effects of injection volume, flow rate and membrane size on the separation of membrane were studied. Under the optimal conditions, the separation factors (α) and resolution (Rs) with water as mobile phase were 3.00 and 0.95 for propranolol hydrochloride, 1.65 and 0.46 for metoprolol, respectively. The study opens up a new way for the isolation and analysis of chiral compounds.
-
表 1 三种膜色谱装置具体参数
Table 1. Specific parameters of three membrane chromatography devices
/mm 型号 凹槽直径 凹槽
深度过滤芯
厚度过滤芯
直径孔道
直径整体
高度大号 33 1 2.0 33 0.5 25 中号 22 1 1.5 22 0.5 25 小号 13 1 1.5 13 0.5 27 表 2 不同进样量条件下盐酸普萘洛尔的分离结果
Table 2. Separation results of propranolol hydrochloride under different injection volumes
进样量/μL k1 k2 α Rs 1 4.20 11.53 2.75 0.68 2 3.99 11.06 2.77 0.82 3 3.50 10.50 3.00 0.95 4 3.27 10.06 3.08 0.88 5 3.54 10.16 2.87 0.74 表 3 不同流速下盐酸普萘洛尔的分离结果
Table 3. Separation results of propranolol hydrochloride under different flow rates
流速/ (mL/min) k1 k2 α Rs 0.01 14.46 34.25 2.37 0.78 0.02 6.75 18.00 2.67 0.80 0.03 3.50 10.50 3.00 0.95 0.04 3.40 8.83 2.60 0.84 0.05 2.46 6.20 2.52 0.77 表 4 不同膜尺寸下盐酸普萘洛尔的分离结果
Table 4. Separation results of propranolol hydrochloride under different membrane sizes
膜尺寸/mm k1 k2 α Rs 33 5.17 12.83 2.48 0.88 22 3.50 10.50 3.00 0.95 13 3.64 9.66 2.65 0.87 表 5 不同进样量条件下美托洛尔的分离结果
Table 5. Separation results of metoprolol under different injection volumes
进样量/μL k1 k2 α Rs 1 2.43 3.44 1.42 0.38 2 2.39 3.41 1.43 0.43 3 1.70 2.80 1.65 0.46 4 2.34 3.43 1.46 0.37 5 2.45 3.43 1.40 0.25 表 6 不同流速下美托洛尔的分离结果
Table 6. Separation results of metoprolol under different flow rates
流速/ (mL/min) k1 k2 α Rs 0.01 6.55 8.69 1.33 0.38 0.02 4.84 6.59 1.36 0.40 0.03 1.70 2.80 1.65 0.46 0.04 1.61 2.41 1.49 0.43 0.05 0.50 0.94 1.88 0.33 表 7 不同膜尺寸下美托洛尔的分离结果
Table 7. Separation results of metoprolol under different membrane sizes
膜尺寸/mm k1 k2 α Rs 33 — — — — 22 1.70 2.80 1.65 0.46 13 1.48 2.13 1.44 0.41 -
[1] Wu S K, Snajdrova R, Moore J C, et al. Biocatalysis: enzymatic synthesis for industrial applications[J]. Angewandte Chemie (International Ed in English),2021,60 (1):88-119. doi: 10.1002/anie.202006648 [2] Choi Y, Park J Y, Chang P S. Integral stereoselecti-vity of lipase based on the chromatographic resolution of enantiomeric/regioisomeric diacylglycerols[J]. Journal of Agricultural and Food Chemistry,2021,69 (1):325-331. doi: 10.1021/acs.jafc.0c07430 [3] 袁黎明. 手性识别材料[M]. 北京: 科学出版社, 2010YUAN Liming. Chiral recognition materials[M]. Beijing: Science Press, 2010. [4] 李克丽, 袁黎明, 章俊辉, 等. 色谱手性分离研究[J]. 分析测试技术与仪器,2017,23(3):159-164LI Keli, YUAN Liming, ZHANG Junhui, et al. Study on chiral separation of chromatography[J]. Analysis and Testing Technology and Instruments,2017,23 (3):159-164. [5] 刘家玮, 刘湘唯, Habib Ur Rehman, 等. 金属有机框架色谱固定相的研究进展[J]. 分析测试技术与仪器,2021,27(2):65-76LIU Jiawei, LIU Xiangwei, Habib Ur Rehman, et al. Progress in metal-organic frameworks as stationary phase for chromatographic separation[J]. Analysis and Testing Technology and Instruments,2021,27 (2):65-76. [6] Chen J, Yu B, Cong H L, et al. Recent development and application of membrane chromatography[J]. Analytical and Bioanalytical Chemistry,2023,415 (1):45-65. doi: 10.1007/s00216-022-04325-8 [7] Ghosh R. Ultrahigh-speed, ultrahigh-resolution preparative separation of protein biopharmaceuticals using membrane chromatography[J]. Journal of Separation Science,2022,45 (12):2024-2033. doi: 10.1002/jssc.202200183 [8] Orr V, Zhong L Y, Moo-Young M, et al. Recent advances in bioprocessing application of membrane chromatography[J]. Biotechnology Advances,2013,31 (4):450-465. doi: 10.1016/j.biotechadv.2013.01.007 [9] Zhang S Y, Chen X, Sun L D, et al. β-cyclodextrin-self-assembled nanochannel membrane for the separation of chiral drugs[J]. ACS Applied Nano Materials,2020,3 (5):4351-4356. doi: 10.1021/acsanm.0c00481 [10] 蔡志威, 梁键谋, 陈超. 扫描电子显微镜-能谱联用在鉴别药包材上的应用[J]. 分析测试技术与仪器,2022,28(3):260-266CAI Zhiwei, LIANG Jianmou, CHEN Chao. Application of scanning electron microscopy-energy dispersive spectroscopy in identification of pharmaceutical packaging materials[J]. Analysis and Testing Technology and Instruments,2022,28 (3):260-266. [11] Han H D, Liu W, Xiao Y, et al. Advances of enantioselective solid membranes[J]. New Journal of Chemistry,2021,45 (15):6586-6599. doi: 10.1039/D1NJ00169H [12] Liu T Q, Li Z, Wang J J, et al. Solid membranes for chiral separation: a review[J]. Chemical Engineering Journal,2021,410 :128247. doi: 10.1016/j.cej.2020.128247 [13] Kalam M N, Rasool M F, Rehman A U, et al. Clinical pharmacokinetics of propranolol hydrochloride: a review[J]. Current Drug Metabolism,2020,21 (2):89-105. doi: 10.2174/1389200221666200414094644 [14] Zamir A, Hussain I, Rehman A U, et al. Clinical pharmacokinetics of metoprolol: a systematic review[J]. Clinical Pharmacokinetics,2022,61 (8):1095-1114. doi: 10.1007/s40262-022-01145-y [15] Sahebi S, Phuntsho S, Woo Y C, et al. Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane[J]. Desalination,2016,389 :129-136. doi: 10.1016/j.desal.2015.11.028 [16] Okamoto Y, Aburatani R, Fukumoto T, et al. Useful chiral stationary phases for HPLC Amylose tris(3, 5-dimethylphenylcarbamate) and tris(3, 5-dichloro-phenylcarbamate) supported on silica gel[J]. Chemistry Letters,1987,16 (9):1857-1860. doi: 10.1246/cl.1987.1857 -