扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于镍钼硫化物纳米花修饰碳纳米管的脑利钠肽电化学免疫传感器的构建

李燕 朱长慧 代玉雪 李志英

李燕, 朱长慧, 代玉雪, 李志英. 基于镍钼硫化物纳米花修饰碳纳米管的脑利钠肽电化学免疫传感器的构建[J]. 分析测试技术与仪器, 2023, 29(3): 292-298. doi: 10.16495/j.1006-3757.2023.03.007
引用本文: 李燕, 朱长慧, 代玉雪, 李志英. 基于镍钼硫化物纳米花修饰碳纳米管的脑利钠肽电化学免疫传感器的构建[J]. 分析测试技术与仪器, 2023, 29(3): 292-298. doi: 10.16495/j.1006-3757.2023.03.007
LI Yan, ZHU Changhui, DAI Yuxue, LI Zhiying. Construction of Electrochemical Immunosensor for Ultrasensitive Determination of Brain Natriuretic Peptide Based on Nanocomposite of Nickel Molybdenum Sulfide Supported on Carbon Nanotubes[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 292-298. doi: 10.16495/j.1006-3757.2023.03.007
Citation: LI Yan, ZHU Changhui, DAI Yuxue, LI Zhiying. Construction of Electrochemical Immunosensor for Ultrasensitive Determination of Brain Natriuretic Peptide Based on Nanocomposite of Nickel Molybdenum Sulfide Supported on Carbon Nanotubes[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 292-298. doi: 10.16495/j.1006-3757.2023.03.007

基于镍钼硫化物纳米花修饰碳纳米管的脑利钠肽电化学免疫传感器的构建

doi: 10.16495/j.1006-3757.2023.03.007
详细信息
    作者简介:

    李燕(1979−),女,实验师,主要从事电化学传感器的构建、环境污染物的处理等,E-mail:chm_liy@ujn.edu.cn

    通讯作者:

    代玉雪(1988−),女,讲师,主要从事电化学传感器的构建以及环境能源类催化剂的研发等,E-mail:daiyuxue_sd@163.com

  • 中图分类号: O657. 1

Construction of Electrochemical Immunosensor for Ultrasensitive Determination of Brain Natriuretic Peptide Based on Nanocomposite of Nickel Molybdenum Sulfide Supported on Carbon Nanotubes

  • 摘要: 制备了一种三维多孔镍钼硫化物纳米花修饰碳纳米管(CNT)的复合材料(NiMoS@CNT). 通过扫描电子显微镜和X射线衍射表征所合成材料的形貌和结构. 利用循环伏安法和计时电流法对所制备材料的电化学催化性能进行研究. 基于NiMoS@CNT对过氧化氢(H2O2)优异的电催化性能,构建了一种检测脑利钠肽的夹心型电化学传感器. 在最优条件下,电流响应强度和脑利钠肽质量浓度的对数在0.20~20 ng/mL范围内呈线性关系. 结果表明免疫传感器具有高的灵敏度、选择性和稳定性,可用于实际样品的检测.
  • 图  1  夹心型免疫传感器制备示意图

    Figure  1.  Schematic diagram of processing of sandwich immunosensor

    图  2  (A)NiS、(B)MoS2和(C)(D)NiMoS@CNT的SEM图

    Figure  2.  SEM images of (A) NiS, (B) MoS2 and (C) (D) NiMoS@CNT

    图  3  (a)NiMoS@CNT、(b)NiS和(c)MoS2的XRD图

    Figure  3.  XRD spectra of (a) NiMoS@CNT, (b) NiS and (c) MoS2

    图  4  在 PBS(pH=7.4)中加入5 mmol/L H2O2的(A)计时电流曲线和(B)循环伏安扫描曲线

    (a)GCE,(b)NiS/GCE,(c)MoS2/GCE,(d)NiMoS@CNT/GCE

    Figure  4.  (A) Chronoamperometry curves and (B) cyclic voltammetry curves of (a) GCE, (b) NiS/GCE, (c) MoS2/GCE, (d) NiMoS@CNT/GCE in PBS solution (pH=7.4) containing 5 mmol/L H2O2

    图  5  (a)GCE、(b)CNT-Ab1/GCE、(c)BSA/CNT-Ab1/GCE、(d)BNP/BSA/CNT-Ab1/GCE、(e)NiMoS@CNT-Ab2/BNP/BSA/CNT-Ab1/GCE在含有2 mmol/L K3[Fe(CN)6]和0.1 mol/L KCl的PBS(pH=7.4)溶液中的循环伏安曲线图

    Figure  5.  Cyclic voltammetry curves of (a) GCE, (b) CNT-Ab1/GCE, (c) BSA/CNT-Ab1/GCE, (d) BNP/BSA/CNT-Ab1/GCE and (e) NiMoS@CNT-Ab2/ BNP/BSA/CNT-Ab1/GCE in PBS (pH=7.4) solution containing 2 mmol/L K3[Fe(CN)6] and 0.1 mol/L KCl

    图  6  (A)PBS溶液pH对传感器电流的影响(10 ng/mL BNP),(B)CNT-Ab1质量浓度对传感器电流的影响(10 ng/mL BNP),(C)NiMoS@CNT-Ab2质量浓度对传感器电流的影响(10 ng/mL BNP)

    Figure  6.  Effect of (A) pH of PBS solution, (B) concentration of CNT-Ab1 and (C) concentration of NiMoS@CNT-Ab2 on response of prepared immunosensor to detect 10 ng/mL BNP

    图  7  (A)检测不同质量浓度BNP的免疫传感器的电化学信号,(B)检测不同浓度BNP的免疫传感器的标准曲线

    (a)~(g)BNP质量浓度分别为0.20、0.50、1.0、3.0、5.0、10和20 ng/mL

    Figure  7.  (A) Chronoamperometry curves of immunosensor for detecting different concentrations of BNP, (B) calibration plots of immunosensor to detect different concentrations of BNP

    (a) ~ (g) BNP concentrations of 0.20, 0.50, 1.0, 3.0, 5.0, 10 and 20 ng/mL, respectively

    图  8  (A)5根不同电极上制备的传感器用于检测10.0 ng/mL BNP的电化学信号,(B)传感器制备当天以及放置4、8、12、16天后用于检测10.0 ng/mL BNP的电化学信号,(C)传感器对10.0 ng/mL BNP、10.0 ng/mL BNP+1.0 μg/mL AFP、10.0 ng/mL BNP+1.0 μg/mL glucose、10.0 ng/mL BNP+1.0 μg/mL AA、10.0 ng/mL BNP+1.0 μg/mL CEA的电化学信号

    Figure  8.  (A) Electrochemical signals of immunosensor prepared on 5 different electrodes to detect 10.0 ng/mL BNP, (B) electrochemical signals of immunosensor to detect 10.0 ng/mL BNP on day of sensor preparation and after 4, 8, 12 and 16 days of placement, (C) electrochemical signals of immunosensor for 10.0 ng/mL BNP, 10.0 ng/mL BNP+1.0 μg/mL AFP, 10.0 ng/mL BNP+1.0 μg/mL glucose, 10.0 ng/mL BNP+1.0 μg/mL AA, 10.0 ng/mL BNP+1.0 μg/mL CEA

    表  1  不同方法检测BNP的比较

    Table  1.   Comparison of different methods for detecting BNP

    方法线性范围检测限参考文献
    Abbott AxSym BNP 检测法0~4 000 pg/mL [19]
    电化学免疫传感器0.014~15 ng/mL4 pg/mL[10]
    电位分辨电化学发光免疫传感器5 pg/mL~20 ng/mL3.8 pg/mL[20]
    电化学免疫法1~10 ng/mL0.56 pg/mL[11]
    电化学方法0.20~20 ng/mL0.057 ng/mL本研究
    下载: 导出CSV

    表  2  实际样品的检测(n=5)

    Table  2.   Recovery of prepared immunosensor (n=5)

    样品BNP质量浓度/(ng/mL)添加BNP质量浓度/(ng/mL)平均质量浓度/(ng/mL)RSD/%回收率/%
    0.372.002.323.0497.50
    5.005.432.56101.20
    下载: 导出CSV
  • [1] 董芝欣, 刘淑芳, 崔琳, 等. 脑钠素与充血性心力衰竭[J]. 青岛大学医学院学报,2003,39(3):360-362.
    [2] 徐文新. 血清B型脑利钠肽、超敏C反应蛋白在不同分级心力衰竭患者中的检测价值[J]. 中国现代药物应用,2013,7(1):11-12. doi: 10.3969/j.issn.1673-9523.2013.01.008
    [3] 王清贵, 戚进, 蓝永贞, 等. 脑利钠肽(BNP)对心力衰竭的诊断价值[J]. 当代临床医刊,2016,29(1):1870-1871. doi: 10.3969/j.issn.2095-9559.2016.01.041
    [4] Cowie M R, Jourdain P, Maisel, A, et al. Clinical applications of B-type natriuretic peptide (BNP) testing[J]. European Heart Journal,2003,24 (19):1710-1718. doi: 10.1016/S0195-668X(03)00476-7
    [5] Nishikimi T, Okamoto H, Nakamura M, et al. Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure[J]. PLoS One,2013,8 (1):e53233. doi: 10.1371/journal.pone.0053233
    [6] Jang H R, Wark A W, Baek S H, et al. Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform[J]. Analytical Chemistry,2014,86 (1):814-819. doi: 10.1021/ac4033565
    [7] Matsuura H, Sato Y, Niwa O, et al. Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels[J]. Analytical Chemistry,2005,77 (13):4235-4240. doi: 10.1021/ac040190m
    [8] Zheng D Q, Wang Z Q, Wu J J, et al. A Raman immunosensor based on SERS and microfluidic chip for all-fiber detection of brain natriuretic peptide[J]. Infrared Physics & Technology,2022,125 :104252.
    [9] Sarangadharan I, Wang S L, Tai T Y, et al. Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection[J]. Biosensors and Bioelectronics,2018,107 :259-265. doi: 10.1016/j.bios.2018.02.036
    [10] Serafín V, Torrente-Rodríguez R M, González-Cortés A, et al. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry[J]. Talanta,2018,179 :131-138. doi: 10.1016/j.talanta.2017.10.063
    [11] Zhao J L, Zhu Z Z, Huang X, et al. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide[J]. Microchimica Acta,2020,187 (4):231. doi: 10.1007/s00604-020-4221-z
    [12] Yang X J, Zhao L J, Lian J S. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor[J]. Journal of Power Sources,2017,343 :373-382. doi: 10.1016/j.jpowsour.2017.01.078
    [13] Liu Y R, Hu W H, Li X, et al. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction[J]. Applied Surface Science,2016,384 :51-57. doi: 10.1016/j.apsusc.2016.05.007
    [14] Zhang S, Yu X B, Yu H L, et al. Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2014,6 (24):21880-21885.
    [15] Liu S J, Jin Q, Xu Y, et al. The synergistic effect of Ni promoter on Mo-S/CNT catalyst towards hydrodesulfurization and hydrogen evolution reactions[J]. Fuel,2018,232 :36-44. doi: 10.1016/j.fuel.2018.05.107
    [16] Meng F H, Yan X L, Liu J G, et al. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide[J]. Electrochimica Acta,2011,56 (12):4657-4662. doi: 10.1016/j.electacta.2011.02.105
    [17] Zhou Y B, Yu G, Chang F F, et al. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide[J]. Analytica Chimica Acta,2012,757 :56-62. doi: 10.1016/j.aca.2012.10.036
    [18] Praper T, Beseničar M P, Istinič H, et al. Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH[J]. Molecular Immunology,2010,47 (15):2492-2504. doi: 10.1016/j.molimm.2010.06.001
    [19] 童华诚. 脑利钠肽检测方法及其在心血管疾病中的应用进展[J]. 实用临床医学,2005,6(2):133-136, 138. doi: 10.3969/j.issn.1009-8194.2005.02.084
    [20] Zhao J W, Du J W, Luo J H, et al. A novel potential-resolved electrochemiluminescence immunosensor for the simultaneous determination of brain natriuretic peptide and cardiac troponin I[J]. Sensors and Actuators B: Chemical,2020,311 :127934. doi: 10.1016/j.snb.2020.127934
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-29
  • 录用日期:  2023-07-25
  • 修回日期:  2023-07-25
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回