Construction of Electrochemical Immunosensor for Ultrasensitive Determination of Brain Natriuretic Peptide Based on Nanocomposite of Nickel Molybdenum Sulfide Supported on Carbon Nanotubes
-
摘要: 制备了一种三维多孔镍钼硫化物纳米花修饰碳纳米管(CNT)的复合材料(NiMoS@CNT). 通过扫描电子显微镜和X射线衍射表征所合成材料的形貌和结构. 利用循环伏安法和计时电流法对所制备材料的电化学催化性能进行研究. 基于NiMoS@CNT对过氧化氢(H2O2)优异的电催化性能,构建了一种检测脑利钠肽的夹心型电化学传感器. 在最优条件下,电流响应强度和脑利钠肽质量浓度的对数在0.20~20 ng/mL范围内呈线性关系. 结果表明免疫传感器具有高的灵敏度、选择性和稳定性,可用于实际样品的检测.Abstract: A three-dimensional porous nickel molybdenum sulfide nanoflowers supported on carbon nanotubes (CNT) composite materials (NiMoS@CNT) was prepared. The morphology and structure of the synthesized materials were characterized by scanning electron microscopy and X-ray diffraction. The cyclic voltammetry and chronoamperometry were used to study the electrochemical catalytic performance of the prepared materials. Based on the excellent electrocatalytic performance of NiMoS@CNT for hydrogen peroxide, a sandwich electrochemical sensor for detecting brain natriuretic peptide (BNP) was constructed. Under the optimal conditions, the current response intensity and the logarithm of mass concentration of brain natriuretic peptide was linear in the range of 0.20~20 ng/mL. The immunosensor has a high sensitivity, selectivity and stability, and can be used for the detection of BNP in actual samples.
-
图 5 (a)GCE、(b)CNT-Ab1/GCE、(c)BSA/CNT-Ab1/GCE、(d)BNP/BSA/CNT-Ab1/GCE、(e)NiMoS@CNT-Ab2/BNP/BSA/CNT-Ab1/GCE在含有2 mmol/L K3[Fe(CN)6]和0.1 mol/L KCl的PBS(pH=7.4)溶液中的循环伏安曲线图
Figure 5. Cyclic voltammetry curves of (a) GCE, (b) CNT-Ab1/GCE, (c) BSA/CNT-Ab1/GCE, (d) BNP/BSA/CNT-Ab1/GCE and (e) NiMoS@CNT-Ab2/ BNP/BSA/CNT-Ab1/GCE in PBS (pH=7.4) solution containing 2 mmol/L K3[Fe(CN)6] and 0.1 mol/L KCl
图 7 (A)检测不同质量浓度BNP的免疫传感器的电化学信号,(B)检测不同浓度BNP的免疫传感器的标准曲线
(a)~(g)BNP质量浓度分别为0.20、0.50、1.0、3.0、5.0、10和20 ng/mL
Figure 7. (A) Chronoamperometry curves of immunosensor for detecting different concentrations of BNP, (B) calibration plots of immunosensor to detect different concentrations of BNP
(a) ~ (g) BNP concentrations of 0.20, 0.50, 1.0, 3.0, 5.0, 10 and 20 ng/mL, respectively
图 8 (A)5根不同电极上制备的传感器用于检测10.0 ng/mL BNP的电化学信号,(B)传感器制备当天以及放置4、8、12、16天后用于检测10.0 ng/mL BNP的电化学信号,(C)传感器对10.0 ng/mL BNP、10.0 ng/mL BNP+1.0 μg/mL AFP、10.0 ng/mL BNP+1.0 μg/mL glucose、10.0 ng/mL BNP+1.0 μg/mL AA、10.0 ng/mL BNP+1.0 μg/mL CEA的电化学信号
Figure 8. (A) Electrochemical signals of immunosensor prepared on 5 different electrodes to detect 10.0 ng/mL BNP, (B) electrochemical signals of immunosensor to detect 10.0 ng/mL BNP on day of sensor preparation and after 4, 8, 12 and 16 days of placement, (C) electrochemical signals of immunosensor for 10.0 ng/mL BNP, 10.0 ng/mL BNP+1.0 μg/mL AFP, 10.0 ng/mL BNP+1.0 μg/mL glucose, 10.0 ng/mL BNP+1.0 μg/mL AA, 10.0 ng/mL BNP+1.0 μg/mL CEA
表 1 不同方法检测BNP的比较
Table 1. Comparison of different methods for detecting BNP
表 2 实际样品的检测(n=5)
Table 2. Recovery of prepared immunosensor (n=5)
样品BNP质量浓度/(ng/mL) 添加BNP质量浓度/(ng/mL) 平均质量浓度/(ng/mL) RSD/% 回收率/% 0.37 2.00 2.32 3.04 97.50 5.00 5.43 2.56 101.20 -
[1] 董芝欣, 刘淑芳, 崔琳, 等. 脑钠素与充血性心力衰竭[J]. 青岛大学医学院学报,2003,39(3):360-362. [2] 徐文新. 血清B型脑利钠肽、超敏C反应蛋白在不同分级心力衰竭患者中的检测价值[J]. 中国现代药物应用,2013,7(1):11-12. doi: 10.3969/j.issn.1673-9523.2013.01.008 [3] 王清贵, 戚进, 蓝永贞, 等. 脑利钠肽(BNP)对心力衰竭的诊断价值[J]. 当代临床医刊,2016,29(1):1870-1871. doi: 10.3969/j.issn.2095-9559.2016.01.041 [4] Cowie M R, Jourdain P, Maisel, A, et al. Clinical applications of B-type natriuretic peptide (BNP) testing[J]. European Heart Journal,2003,24 (19):1710-1718. doi: 10.1016/S0195-668X(03)00476-7 [5] Nishikimi T, Okamoto H, Nakamura M, et al. Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure[J]. PLoS One,2013,8 (1):e53233. doi: 10.1371/journal.pone.0053233 [6] Jang H R, Wark A W, Baek S H, et al. Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform[J]. Analytical Chemistry,2014,86 (1):814-819. doi: 10.1021/ac4033565 [7] Matsuura H, Sato Y, Niwa O, et al. Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels[J]. Analytical Chemistry,2005,77 (13):4235-4240. doi: 10.1021/ac040190m [8] Zheng D Q, Wang Z Q, Wu J J, et al. A Raman immunosensor based on SERS and microfluidic chip for all-fiber detection of brain natriuretic peptide[J]. Infrared Physics & Technology,2022,125 :104252. [9] Sarangadharan I, Wang S L, Tai T Y, et al. Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection[J]. Biosensors and Bioelectronics,2018,107 :259-265. doi: 10.1016/j.bios.2018.02.036 [10] Serafín V, Torrente-Rodríguez R M, González-Cortés A, et al. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry[J]. Talanta,2018,179 :131-138. doi: 10.1016/j.talanta.2017.10.063 [11] Zhao J L, Zhu Z Z, Huang X, et al. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide[J]. Microchimica Acta,2020,187 (4):231. doi: 10.1007/s00604-020-4221-z [12] Yang X J, Zhao L J, Lian J S. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor[J]. Journal of Power Sources,2017,343 :373-382. doi: 10.1016/j.jpowsour.2017.01.078 [13] Liu Y R, Hu W H, Li X, et al. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction[J]. Applied Surface Science,2016,384 :51-57. doi: 10.1016/j.apsusc.2016.05.007 [14] Zhang S, Yu X B, Yu H L, et al. Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2014,6 (24):21880-21885. [15] Liu S J, Jin Q, Xu Y, et al. The synergistic effect of Ni promoter on Mo-S/CNT catalyst towards hydrodesulfurization and hydrogen evolution reactions[J]. Fuel,2018,232 :36-44. doi: 10.1016/j.fuel.2018.05.107 [16] Meng F H, Yan X L, Liu J G, et al. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide[J]. Electrochimica Acta,2011,56 (12):4657-4662. doi: 10.1016/j.electacta.2011.02.105 [17] Zhou Y B, Yu G, Chang F F, et al. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide[J]. Analytica Chimica Acta,2012,757 :56-62. doi: 10.1016/j.aca.2012.10.036 [18] Praper T, Beseničar M P, Istinič H, et al. Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH[J]. Molecular Immunology,2010,47 (15):2492-2504. doi: 10.1016/j.molimm.2010.06.001 [19] 童华诚. 脑利钠肽检测方法及其在心血管疾病中的应用进展[J]. 实用临床医学,2005,6(2):133-136, 138. doi: 10.3969/j.issn.1009-8194.2005.02.084 [20] Zhao J W, Du J W, Luo J H, et al. A novel potential-resolved electrochemiluminescence immunosensor for the simultaneous determination of brain natriuretic peptide and cardiac troponin I[J]. Sensors and Actuators B: Chemical,2020,311 :127934. doi: 10.1016/j.snb.2020.127934 -