Determination of 2-Chloroethanol Residues in Gelatin Hollow Capsules by Headspace Gas Chromatography-Electron Capture Detector Method
-
摘要: 建立明胶空心胶囊中2-氯乙醇残留量的顶空气相色谱-电子捕获检测器分析测定方法. 明胶空心胶囊溶液经NaCl溶液盐析后失去明胶的物理性质,采用顶空气相色谱-电子捕获检测器对明胶空心胶囊溶液中2-氯乙醇含量进行分析. 试验结果表明,2-氯乙醇在10~35 μg/g范围内呈良好线性关系,r为0.999 4,定量限和检出限分别为10和5 μg/g,回收率为92.1%~102.2%,相对标准偏差(RSD)均小于10%,使用所建立的方法对样品进行了检验. 方法简单准确,灵敏度高,有效解决了明胶空心胶囊基质效应,可用于市售明胶空心胶囊中2-氯乙醇的定量分析.
-
关键词:
- 明胶空心胶囊 /
- 2-氯乙醇 /
- 盐析 /
- 气相色谱-电子捕获检测器 /
- 顶空气相色谱
Abstract: A method was developed to determine the residues of 2-chloroethanol in gelatin hollow capsules using headspace gas chromatography-electron capture detector method. The physical properties of gelatin disappeared when the gelatin hollow capsule solution was salting out with NaCl solution. The content of 2-chloroethanol in gelatin hollow capsule solution was analyzed by headspace gas chromatography-electron capture detector method. The results showed that 2-chloroethanol had a good linear relationship in the range of 10~35 μg/g, with an r value of 0.999 4. The limits of quantitation and limits of detection were 10 and 5 μg/g, respectively. The recoveries ranged from 92.1%~102.2%, the relative standard deviation (RSD) were all less than 10%. The samples were tested by the method. The method is simple, accurate and sensitive and effective in solving the matrix effect of gelatin hollow capsules, and can be used for the quantitative analysis of 2-chloroethanol in commercially available gelatin hollow capsules. -
图 3 20 μg/g 2-CE对照溶液谱图
色谱条件: DB-624(30 m × 0.320 mm ×1.8 μm)色谱柱,105 ℃柱温,ECD检测器温度为300 ℃,色谱柱流量为0.3 mL/min
Figure 3. Chromatogram of 20μg/g 2-CE
chromatographic conditions: chromatographic column used as DB-624 (30 m×0.320 mm×1.8 μm), column temperature of 105 °C, temperature of ECD detector of 300 °C, flow rate of 0.3 mL/min
图 4 样品溶液在ECD中色谱图
色谱条件: 色谱柱DB-624(30 m × 0.320 mm ×1.8 μm),柱温105 ℃,ECD检测器温度为300 ℃,色谱柱流量为0.3 mL/min
Figure 4. Chromatogram of sample solution in ECD
chromatographic conditions: chromatographic column used as DB-624 (30 m×0.320 mm×1.8 μm), column temperature of 105 °C, temperature of ECD detector of 300 °C, flow rate of 0.3 mL/min
图 5 2-CE及样品溶液在FID中色谱图
(a)2-CE,(b)样品,(1)~(3)均为杂峰色谱条件: DB-624(30 m × 0.320 mm ×1.8 μm)色谱柱, 105 ℃柱温, FID检测器温度为300 ℃,色谱柱流量为0.3 mL/min
Figure 5. Chromatograms of 2-CE and sample solution in FID
(a) 2-CE, (b) sample, (1)~(3) all impure peakschromatographic conditions: chromatographic column used as DB-624 (30 m×0.320 mm×1.8 μm), column temperature of 105 °C, temperature of FID detector of 300 °C, flow rate of 0.3 mL/min
表 1 纯水溶液中的基质效应
Table 1. Matrix effect of pure aqueous solution
溶液 峰面积 与纯水对照溶液的峰面积比值 纯水对照溶液 5 353 1.00 基质溶液-1 3 829 0.71 基质溶液-2 3 866 0.72 基质溶液-3 3 771 0.70 表 2 2-CE回收率测定结果
Table 2. Determination results of recovery rates of 2-CE
编号 样品质
量/μg加入质
量/ μg测得质
量/ μg回收
率/%平均回收
率/%RSD/% 1 0.0 16.0 16.4 102.2 98.0 4.4 2 0.0 16.0 16.0 99.7 3 0.0 16.0 14.7 92.1 4 0.0 20.0 19.5 97.5 97.8 1.3 5 0.0 20.0 19.9 99.6 6 0.0 20.0 19.3 96.5 7 0.0 24.0 22.4 93.5 98.5 3.7 8 0.0 24.0 24.0 100.0 9 0.0 24.0 24.5 102.0 -
[1] Gullapalli R P, Mazzitelli C L. Gelatin and non-gelatin capsule dosage forms[J]. Journal of Pharmaceutical Sciences,2017,106 (6):1453-1465. doi: 10.1016/j.xphs.2017.02.006 [2] 庞小刚, 郭捷, 王昊. 双柱气相色谱法测定明胶空心胶囊中环氧乙烷的残留量[J]. 化学分析计量,2016,25(1):38-40 doi: 10.3969/j.issn.1008-6145.2016.01.010PANG Xiaogang, GUO Jie, WANG Hao. Determination of ethylene oxide in gelatin hollow capsules by dual capillary column gas chromatography[J]. Chemical Analysis and Meterage,2016,25 (1):38-40. doi: 10.3969/j.issn.1008-6145.2016.01.010 [3] Wang D D, Zhang A J, Guo W X, et al. Identification of residues in ethylene oxide sterilized hard gelatin capsule shells by gas chromatography-mass spectrometry and development of a simple gas chromatography-flame ionization detector method for the determination of residues[J]. Journal of Chromatography Open,2022,2 :100061. doi: 10.1016/j.jcoa.2022.100061 [4] Borroto J, Castoldi A F, Chiusolo A, et al. Statement on the BfR opinion regarding the toxicity of 2-chloroethanol[J]. EFSA Journal,2022,20 (2):e07147. [5] Allemang A, Lester C, Roth T, et al. Assessing the genotoxicity and carcinogenicity of 2-chloroethanol through structure activity relationships and in vitro testing approaches[J]. Food and Chemical Toxicology,2022,168 :113290. doi: 10.1016/j.fct.2022.113290 [6] 国家药典委员会. 中华人民共和国药典(四部 2020年版)[M]. 北京: 中国医药科技出版社, 2020: 687. [7] Jensen K G. Determination of ethylene oxide residues in processed food products by gas-liquid chromatography after derivatization[J]. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung,1988,187 (6):535-540. [8] Gilsbach W, Weeren R D. Ringuntersuchungen zur validierung einer gaschromatographischen methode zur bestimmung von rückstnden an ethylenoxid und 2-chlorethanol in gewürzen aus paprika und chili[J]. Deutsche Lebensmittel-Rundschau, 1999. [9] Bessaire T, Stroheker T, Eriksen B, et al. Analysis of ethylene oxide in ice creams manufactured with contaminated carob bean gum (E410)[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment,2021,38 (12):2116-2127. [10] 国家药典委员会. 中华人民共和国药典(二部 2020年版)[M] . 北京: 中国医药科技出版社, 2020: 796. -