扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电感耦合等离子体质谱法测定镁合金中的痕量元素

黄丹宇

黄丹宇. 电感耦合等离子体质谱法测定镁合金中的痕量元素[J]. 分析测试技术与仪器, 2023, 29(3): 328-333. doi: 10.16495/j.1006-3757.2023.03.013
引用本文: 黄丹宇. 电感耦合等离子体质谱法测定镁合金中的痕量元素[J]. 分析测试技术与仪器, 2023, 29(3): 328-333. doi: 10.16495/j.1006-3757.2023.03.013
HUANG Danyu. Determination of Trace Elements in Magnesium Alloys by Inductively Coupled Plasma Mass Spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 328-333. doi: 10.16495/j.1006-3757.2023.03.013
Citation: HUANG Danyu. Determination of Trace Elements in Magnesium Alloys by Inductively Coupled Plasma Mass Spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(3): 328-333. doi: 10.16495/j.1006-3757.2023.03.013

电感耦合等离子体质谱法测定镁合金中的痕量元素

doi: 10.16495/j.1006-3757.2023.03.013
详细信息
    作者简介:

    黄丹宇(1993−),女,硕士研究生,中级工程师,研究方向为材料化学,Email:carriehdy123@163.com

  • 中图分类号: O657. 63

Determination of Trace Elements in Magnesium Alloys by Inductively Coupled Plasma Mass Spectrometry

  • 摘要: 采用操作简单的基体匹配法和内标法校正基体,建立了一套完整的电感耦合等离子体质谱(ICP-MS)法检测镁合金中的铜、钴、银、铅、锑、铍、铬、铟、钇、镉、锰、钛、钽、镧、铈15种痕量元素. 检出限、加标回收、精密度的相关试验表明,各元素的检出限范围为0.003 9~1.6 μg/L,加标回收率为95.1%~109.2%,精密度为0.2%~2.3%. 方法简单、快速、高效,可满足市场上对镁合金中痕量元素的检测需求.
  • 表  1  调谐指标

    Table  1.   Tuning indicators

    调谐指标质量浓度/(μg/L)记数范围RSD/(%, n=6)
    9Be1.00>2 000<3.0
    24Mg1.00>15 000<3.0
    115In1.00>40 000<3.0
    238U1.00>30 000<3.0
    Bkgd 2201.00≤1<3.0
    156CeO/140Ce1.00≤0.035<3.0
    70Ce++/140Ce1.00≤0.04<3.0
    下载: 导出CSV

    表  2  待测元素干扰分析

    Table  2.   Interference analysis of elements to be tested

    元素潜在干扰元素潜在干扰
    Cu 65PO2, SO2, TiO, Ba2+Cd 113Sn, MoO
    Cu 63TiO, PO2Cd 114Sn, MoO
    Co 59CaOCr 52ClO, HClO, SO, ArO
    In 115Sn, MoOCr 53ArC, ArN
    In 113Cd, MoOMn 55ArC, HSO, ClO, HClO
    Ag 107ZrO, YOTi 46ArN, HClO, ClO
    Ag 109ZrOTi 47Ca, NO2, CO2, SiO, Zr4+
    Cd 110Pd, MoO, ZrOTi 48NO2, SiO, CCl, PO, Zr4+
    Cd 112Sn, MoO, ZrOTa 181Ca, SO, ArC, NO2, CCl, PO, Zr4+, DyO, HoO
    下载: 导出CSV

    表  3  线性回归方程、相关系数、检出限和线性范围

    Table  3.   Linear regression equations, correlation coefficients, detection limits and linear ranges

    元素线性回归方程相关系数检出限/(μg/L)线性范围/(μg/L)
    Cuy=8.46×10−5x+0.017 10.999 80.140.5~100
    Coy=3.51×10−4x+0.023 30.999 90.522.0~100
    Agy=1.93×10−2x−0.077 10.999 90.0580.5~100
    Pby=2.28×10−2x−1.699 40.999 80.702.0~100
    Sby=4.89×10−4x+0.016 30.999 80.422.0~100
    Bey=5.63×10−5x+0.007 50.999 80.003 90.1~100
    Cry=1.96×10−5x+0.007 70.999 90.813.0~100
    Iny=1.09×10−5x+0.001 60.999 90.0890.5~100
    Yy=2.27×10−5x+0.014 30.999 90.160.5~100
    Cdy=7.96×10−5x+0.017 30.999 90.0110.1~100
    Mny=2.67×10−5x+0.013 10.999 80.973.0~100
    Tiy=4.91×10−5x+0.003 80.999 81.65.0~100
    Tay=6.00×10−3x+0.155 90.999 80.562.0~100
    Lay=5.07×10−4x+0.100 50.999 90.006 30.1~30
    Cey=4.99×10−4x+0.095 10.999 90.008 90.1~30
    下载: 导出CSV

    表  4  回收试验结果

    Table  4.   Results of recovery

    元素测定质量
    浓度/(μg/L)
    回收率/%
    4.0 μg/L20.0 μg/L80.0 μg/L
    Cu
    Co
    Ag
    Pb
    Sb
    Be
    Cr
    In
    Y
    Cd
    Mn
    Ti
    Ta
    11.3
    5.7
    16.0
    4.2
    11.9
    22.8
    7.3
    10.6
    9.8
    9.8
    2.8
    30.4
    4.9
    103.6
    98.0
    96.0
    99.3
    100.4
    101.5
    105.7
    99.4
    101.2
    95.1
    101.9
    98.0
    100.3
    101.3
    105.0
    98.5
    102.7
    103.6
    105.1
    106.3
    97.3
    99.4
    99.4
    109.2
    105.8
    103.3
    101.6
    108.9
    99.5
    103.0
    104.2
    101.6
    103.1
    95.1
    98.2
    95.6
    106.1
    109.0
    103.0
    下载: 导出CSV

    表  5  镧和铈元素回收试验结果

    Table  5.   Results of recovery for lanthanum and cerium elements

    元素测定质量
    浓度/(μg/L)
    回收率/%
    1.0 μg/L5.0 μg/L30.0 μg/L
    La0.698.1100.095.5
    Ce0.9101.0101.698.6
    下载: 导出CSV

    表  6  精密度测试结果(n=8)

    Table  6.   Results of precision (n = 8)

    元素测定质量浓度/(μg/L)RSD/%
    Cu11.31.5
    Co5.72.2
    Ag16.00.2
    Pb4.21.1
    Sb11.91.8
    Be22.81.6
    Cr7.3
    1.8
    In10.61.8
    Y9.81.2
    Cd9.80.9
    Mn2.81.8
    Ti30.42.3
    Ta4.91.0
    La0.61.4
    Ce0.91.9
    下载: 导出CSV

    表  7  不同方法结果的比较

    Table  7.   Comparison of results of different methods /(mg/g)

    元素ICP-MSICP-AES
    Cu1.11.1
    Co0.60.6
    Ag1.61.5
    Pb0.4<1.0
    Sb1.20.9
    Be2.32.0
    Cr0.70.9
    In1.1
    Y1.0
    Cd1.01.1
    Mn0.3<1.0
    Ti3.02.7
    Ta0.5
    La0.06<1.0
    Ce0.09<1.0
    下载: 导出CSV
  • [1] 余琨, 黎文献, 王日初, 等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报,2003,13(2):277-288 doi: 10.3321/j.issn:1004-0609.2003.02.001

    YU Kun, LI Wenxian, WANG Richu, et al. Research, development and application of wrought magnesium alloys[J]. The Chinese Journal of Nonferrous Metals,2003,13 (2):277-288. doi: 10.3321/j.issn:1004-0609.2003.02.001
    [2] 朱仁. 无机化学[M]. 北京: 高等教育出版社, 2006: 348-358.
    [3] 刘元元. 高纯镁和高纯钼的质谱纯度分析及其结果不确定度评定[D]. 北京: 钢铁研究总院, 2018

    LIU Yuanyuan. Mass spectrometry purity analysis of high purity magnesium and high purity molybdenum and its uncertainty evaluation[D]. Beijing: Central Iron and Steel Research Institute, 2018.
    [4] 鲍同尧. 合金元素对镁合金腐蚀行为的影响[D]. 太原: 太原理工大学, 2021

    BAO Tongyao. Effect of alloying elements on corrosion behavior of magnesium alloys[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [5] 王勇平, 何耀华, 朱兆金, 等. Mg-Nd-Zn-Zr镁合金体外降解行为及生物相容性[J]. 科学通报,2012,57(32):3109-3116. doi: 10.1360/csb2012-57-32-3109
    [6] Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials,2009,30 (4):484-498. doi: 10.1016/j.biomaterials.2008.10.021
    [7] 王勇平, 蒋垚, 毛琳, 等. 可降解金属Mg-Nd-Zn-Zr镁合金的降解行为[J]. 中国组织工程研究,2013,17(47):8189-8195 doi: 10.3969/j.issn.2095-4344.2013.47.008

    WANG Yongping, JIANG Yao, MAO Lin, et al. In vitro and in vivo degradation of Mg-Nd-Zn-Zr alloy[J]. Chinese Journal of Tissue Engineering Research,2013,17 (47):8189-8195. doi: 10.3969/j.issn.2095-4344.2013.47.008
    [8] Mendis C L, Oh-ishi K, Hono K. Enhanced age hardening in a Mg-2.4 at% Zn alloy by trace additions of Ag and Ca[J]. Scripta Materialia,2007,57 (6):485-488. doi: 10.1016/j.scriptamat.2007.05.031
    [9] 高家诚, 乔丽英. 镁基可降解硬组织生物材料的研究进展[J]. 功能材料,2008,39(5):705-708 doi: 10.3321/j.issn:1001-9731.2008.05.001

    GAO Jiacheng, QIAO Liying. Magnesium-based degradable hard tissue biomaterials[J]. Journal of Functional Materials,2008,39 (5):705-708. doi: 10.3321/j.issn:1001-9731.2008.05.001
    [10] 候正全, 蒋斌, 王煜烨, 等. 镁合金新材料及制备加工新技术发展与应用[J]. 上海航天(中英文),2021(3):119-133

    HOU Zhengquan, JIANG Bin, WANG Yuye, et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies[J]. Aerospace Shanghai (Chinese & English),2021 (3):119-133.
    [11] 施立新. 原子吸收光谱法测定镁及镁合金中铜和铁含量[C]//全国轻合金加工学术交流会, 2005: 409-413.
    [12] 张华, 王英锋, 施燕支, 等. 电感耦合等离子体质谱法测定镁合金中的多种元素[J]. 分析试验室,2007,26(6):47-50 doi: 10.3969/j.issn.1000-0720.2007.06.013

    ZHANG Hua, WANG Yingfeng, SHI Yanzhi, et al. Determination of multi-elements in magnesium alloys by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2007,26 (6):47-50. doi: 10.3969/j.issn.1000-0720.2007.06.013
    [13] 聂西度, 谢华林. 电感耦合等离子体原子发射光谱法测定金属镁中杂质元素[J]. 冶金分析,2012,32(7):79-82 doi: 10.3969/j.issn.1000-7571.2012.07.018

    NIE Xidu, XIE Hualin. Determination of the impurity elements in magnesium by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis,2012,32 (7):79-82. doi: 10.3969/j.issn.1000-7571.2012.07.018
    [14] 刘元元, 胡净宇. 辉光放电质谱法测定棒状高纯镁中12种杂质元素[J]. 冶金分析,2018,38(4):16-21 doi: 10.13228/j.boyuan.issn1000-7571.010293

    LIU Yuanyuan, HU Jingyu. Determination of twelve impurities in rodlike high-purity magnesium by glow discharge mass spectrometry[J]. Metallurgical Analysis,2018,38 (4):16-21. doi: 10.13228/j.boyuan.issn1000-7571.010293
    [15] 张喜林, 钱亚锋, 孙志阳, 等. 电感耦合等离子体发射光谱法测定可溶性镁合金中高含量镍[J]. 化学分析计量,2023,32(7):17-20 doi: 10.3969/j.issn.1008-6145.2023.07.004

    ZHANG Xilin, QIAN Yafeng, SUN Zhiyang, et al. Determination of high content nickel in soluble magnesium alloys by inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage,2023,32 (7):17-20. doi: 10.3969/j.issn.1008-6145.2023.07.004
    [16] 黄丹宇, 刘巍, 陶美娟, 等. 微波消解-电感耦合等离子体质谱法测定铬铁合金中的10种痕量元素[J]. 分析仪器,2021(2):23-27 doi: 10.3969/j.issn.1001-232x.2021.02.006

    HUANG Danyu, LIU Wei, TAO Meijuan, et al. Determination of 10 trace elements in ferrochrome by ICP-MS with microwave digestion[J]. Analytical Instrumentation,2021 (2):23-27. doi: 10.3969/j.issn.1001-232x.2021.02.006
    [17] 黄丹宇, 陶美娟, 郅惠博. 电感耦合等离子体质谱法测定高纯铬中13种痕量元素[J]. 理化检验-化学分册,2021,57(8):759-763

    HUANG Danyu, TAO Meijuan, ZHI Huibo. Determination of 13 trace elements in high-purity chromium by ICP-MS[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis),2021,57 (8):759-763.
    [18] 冯先进, 屈太原. 电感耦合等离子体质谱法(ICP-MS)最新应用进展[J]. 中国无机分析化学,2011,1(1):46-52

    FENG Xianjin, QU Taiyuan. The latest application progress of inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry,2011,1 (1):46-52.
    [19] 刘巍, 吕婷, 陶美娟. 微波消解-电感耦合等离子体质谱法测定石墨烯粉末材料中19种痕量元素[J]. 理化检验-化学分册,2019,55(11):1318-1322

    LIU Wei, LV Ting, TAO Meijuan. ICP-MS determination of 19 trace elements in graphene powder materials with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2019,55 (11):1318-1322.
    [20] 陈忠颖, 刘巍, 郭颖. 电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J]. 理化检验-化学分册,2017,53(12):1416-1418

    CHEN Zhong-ying, LIU Wei, GUO Ying. Matrix effect in the ICP-MS determination of 21 elements in high purity iron[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2017,53 (12):1416-1418.
    [21] 詹胜群, 段勤勤, 黄缘, 等. ISO标准中基体效应对微波消解-ICP-MS测定奶粉中多元素的影响[J]. 中国食品添加剂,2022,33(9):217-225 doi: 10.19804/j.issn1006-2513.2022.09.030

    ZHAN Shengqun, DUAN Qinqin, HUANG Yuan, et al. The influence of matrix effect on the determination of multi-elements in milk powder by microwave digestion-ICP-MS using ISO standard method[J]. China Food Additives,2022,33 (9):217-225. doi: 10.19804/j.issn1006-2513.2022.09.030
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  37
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 录用日期:  2023-08-25
  • 修回日期:  2023-08-25
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回