Determination of Trace Elements in Magnesium Alloys by Inductively Coupled Plasma Mass Spectrometry
-
摘要: 采用操作简单的基体匹配法和内标法校正基体,建立了一套完整的电感耦合等离子体质谱(ICP-MS)法检测镁合金中的铜、钴、银、铅、锑、铍、铬、铟、钇、镉、锰、钛、钽、镧、铈15种痕量元素. 检出限、加标回收、精密度的相关试验表明,各元素的检出限范围为0.003 9~1.6 μg/L,加标回收率为95.1%~109.2%,精密度为0.2%~2.3%. 方法简单、快速、高效,可满足市场上对镁合金中痕量元素的检测需求.
-
关键词:
- 镁合金 /
- 电感耦合等离子体质谱法 /
- 基体匹配 /
- 内标法 /
- 痕量元素
Abstract: A complete set of inductively coupled plasma mass spectrometry (ICP-MS) was established to determined 15 trace elements including copper, cobalt, silver, lead, antimony, beryllium, chromium, indium, yttrium, cadmium, manganese, titanium, tantalum, lanthanum and cerium in magnesium alloys by simple matrix matching method and internal standard method. The test results showed that the detection limits of each element were in the range of 0.003 9~1.6 μg/L. The recoveries were 95.1%~109.2%. The precision was 0.2%~2.3%. The method is simple, fast and efficient, and can meet the market demand for the detection of trace elements in magnesium alloys.-
Key words:
- magnesium alloy /
- ICP-MS /
- matrix matching /
- internal standard method /
- trace elements
-
表 1 调谐指标
Table 1. Tuning indicators
调谐指标 质量浓度/(μg/L) 记数范围 RSD/(%, n=6) 9Be 1.00 >2 000 <3.0 24Mg 1.00 >15 000 <3.0 115In 1.00 >40 000 <3.0 238U 1.00 >30 000 <3.0 Bkgd 220 1.00 ≤1 <3.0 156CeO/140Ce 1.00 ≤0.035 <3.0 70Ce++/140Ce 1.00 ≤0.04 <3.0 表 2 待测元素干扰分析
Table 2. Interference analysis of elements to be tested
元素 潜在干扰 元素 潜在干扰 Cu 65 PO2, SO2, TiO, Ba2+ Cd 113 Sn, MoO Cu 63 TiO, PO2 Cd 114 Sn, MoO Co 59 CaO Cr 52 ClO, HClO, SO, ArO In 115 Sn, MoO Cr 53 ArC, ArN In 113 Cd, MoO Mn 55 ArC, HSO, ClO, HClO Ag 107 ZrO, YO Ti 46 ArN, HClO, ClO Ag 109 ZrO Ti 47 Ca, NO2, CO2, SiO, Zr4+ Cd 110 Pd, MoO, ZrO Ti 48 NO2, SiO, CCl, PO, Zr4+ Cd 112 Sn, MoO, ZrO Ta 181 Ca, SO, ArC, NO2, CCl, PO, Zr4+, DyO, HoO 表 3 线性回归方程、相关系数、检出限和线性范围
Table 3. Linear regression equations, correlation coefficients, detection limits and linear ranges
元素 线性回归方程 相关系数 检出限/(μg/L) 线性范围/(μg/L) Cu y=8.46×10−5x+0.017 1 0.999 8 0.14 0.5~100 Co y=3.51×10−4x+0.023 3 0.999 9 0.52 2.0~100 Ag y=1.93×10−2x−0.077 1 0.999 9 0.058 0.5~100 Pb y=2.28×10−2x−1.699 4 0.999 8 0.70 2.0~100 Sb y=4.89×10−4x+0.016 3 0.999 8 0.42 2.0~100 Be y=5.63×10−5x+0.007 5 0.999 8 0.003 9 0.1~100 Cr y=1.96×10−5x+0.007 7 0.999 9 0.81 3.0~100 In y=1.09×10−5x+0.001 6 0.999 9 0.089 0.5~100 Y y=2.27×10−5x+0.014 3 0.999 9 0.16 0.5~100 Cd y=7.96×10−5x+0.017 3 0.999 9 0.011 0.1~100 Mn y=2.67×10−5x+0.013 1 0.999 8 0.97 3.0~100 Ti y=4.91×10−5x+0.003 8 0.999 8 1.6 5.0~100 Ta y=6.00×10−3x+0.155 9 0.999 8 0.56 2.0~100 La y=5.07×10−4x+0.100 5 0.999 9 0.006 3 0.1~30 Ce y=4.99×10−4x+0.095 1 0.999 9 0.008 9 0.1~30 表 4 回收试验结果
Table 4. Results of recovery
元素 测定质量
浓度/(μg/L)回收率/% 4.0 μg/L 20.0 μg/L 80.0 μg/L Cu
Co
Ag
Pb
Sb
Be
Cr
In
Y
Cd
Mn
Ti
Ta11.3
5.7
16.0
4.2
11.9
22.8
7.3
10.6
9.8
9.8
2.8
30.4
4.9103.6
98.0
96.0
99.3
100.4
101.5
105.7
99.4
101.2
95.1
101.9
98.0
100.3101.3
105.0
98.5
102.7
103.6
105.1
106.3
97.3
99.4
99.4
109.2
105.8
103.3101.6
108.9
99.5
103.0
104.2
101.6
103.1
95.1
98.2
95.6
106.1
109.0
103.0表 5 镧和铈元素回收试验结果
Table 5. Results of recovery for lanthanum and cerium elements
元素 测定质量
浓度/(μg/L)回收率/% 1.0 μg/L 5.0 μg/L 30.0 μg/L La 0.6 98.1 100.0 95.5 Ce 0.9 101.0 101.6 98.6 表 6 精密度测试结果(n=8)
Table 6. Results of precision (n = 8)
元素 测定质量浓度/(μg/L) RSD/% Cu 11.3 1.5 Co 5.7 2.2 Ag 16.0 0.2 Pb 4.2 1.1 Sb 11.9 1.8 Be 22.8 1.6 Cr 7.3 1.8 In 10.6 1.8 Y 9.8 1.2 Cd 9.8 0.9 Mn 2.8 1.8 Ti 30.4 2.3 Ta 4.9 1.0 La 0.6 1.4 Ce 0.9 1.9 表 7 不同方法结果的比较
Table 7. Comparison of results of different methods
/(mg/g) 元素 ICP-MS ICP-AES Cu 1.1 1.1 Co 0.6 0.6 Ag 1.6 1.5 Pb 0.4 <1.0 Sb 1.2 0.9 Be 2.3 2.0 Cr 0.7 0.9 In 1.1 – Y 1.0 – Cd 1.0 1.1 Mn 0.3 <1.0 Ti 3.0 2.7 Ta 0.5 – La 0.06 <1.0 Ce 0.09 <1.0 -
[1] 余琨, 黎文献, 王日初, 等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报,2003,13(2):277-288 doi: 10.3321/j.issn:1004-0609.2003.02.001YU Kun, LI Wenxian, WANG Richu, et al. Research, development and application of wrought magnesium alloys[J]. The Chinese Journal of Nonferrous Metals,2003,13 (2):277-288. doi: 10.3321/j.issn:1004-0609.2003.02.001 [2] 朱仁. 无机化学[M]. 北京: 高等教育出版社, 2006: 348-358. [3] 刘元元. 高纯镁和高纯钼的质谱纯度分析及其结果不确定度评定[D]. 北京: 钢铁研究总院, 2018LIU Yuanyuan. Mass spectrometry purity analysis of high purity magnesium and high purity molybdenum and its uncertainty evaluation[D]. Beijing: Central Iron and Steel Research Institute, 2018. [4] 鲍同尧. 合金元素对镁合金腐蚀行为的影响[D]. 太原: 太原理工大学, 2021BAO Tongyao. Effect of alloying elements on corrosion behavior of magnesium alloys[D]. Taiyuan: Taiyuan University of Technology, 2021. [5] 王勇平, 何耀华, 朱兆金, 等. Mg-Nd-Zn-Zr镁合金体外降解行为及生物相容性[J]. 科学通报,2012,57(32):3109-3116. doi: 10.1360/csb2012-57-32-3109 [6] Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials,2009,30 (4):484-498. doi: 10.1016/j.biomaterials.2008.10.021 [7] 王勇平, 蒋垚, 毛琳, 等. 可降解金属Mg-Nd-Zn-Zr镁合金的降解行为[J]. 中国组织工程研究,2013,17(47):8189-8195 doi: 10.3969/j.issn.2095-4344.2013.47.008WANG Yongping, JIANG Yao, MAO Lin, et al. In vitro and in vivo degradation of Mg-Nd-Zn-Zr alloy[J]. Chinese Journal of Tissue Engineering Research,2013,17 (47):8189-8195. doi: 10.3969/j.issn.2095-4344.2013.47.008 [8] Mendis C L, Oh-ishi K, Hono K. Enhanced age hardening in a Mg-2.4 at% Zn alloy by trace additions of Ag and Ca[J]. Scripta Materialia,2007,57 (6):485-488. doi: 10.1016/j.scriptamat.2007.05.031 [9] 高家诚, 乔丽英. 镁基可降解硬组织生物材料的研究进展[J]. 功能材料,2008,39(5):705-708 doi: 10.3321/j.issn:1001-9731.2008.05.001GAO Jiacheng, QIAO Liying. Magnesium-based degradable hard tissue biomaterials[J]. Journal of Functional Materials,2008,39 (5):705-708. doi: 10.3321/j.issn:1001-9731.2008.05.001 [10] 候正全, 蒋斌, 王煜烨, 等. 镁合金新材料及制备加工新技术发展与应用[J]. 上海航天(中英文),2021(3):119-133HOU Zhengquan, JIANG Bin, WANG Yuye, et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies[J]. Aerospace Shanghai (Chinese & English),2021 (3):119-133. [11] 施立新. 原子吸收光谱法测定镁及镁合金中铜和铁含量[C]//全国轻合金加工学术交流会, 2005: 409-413. [12] 张华, 王英锋, 施燕支, 等. 电感耦合等离子体质谱法测定镁合金中的多种元素[J]. 分析试验室,2007,26(6):47-50 doi: 10.3969/j.issn.1000-0720.2007.06.013ZHANG Hua, WANG Yingfeng, SHI Yanzhi, et al. Determination of multi-elements in magnesium alloys by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2007,26 (6):47-50. doi: 10.3969/j.issn.1000-0720.2007.06.013 [13] 聂西度, 谢华林. 电感耦合等离子体原子发射光谱法测定金属镁中杂质元素[J]. 冶金分析,2012,32(7):79-82 doi: 10.3969/j.issn.1000-7571.2012.07.018NIE Xidu, XIE Hualin. Determination of the impurity elements in magnesium by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis,2012,32 (7):79-82. doi: 10.3969/j.issn.1000-7571.2012.07.018 [14] 刘元元, 胡净宇. 辉光放电质谱法测定棒状高纯镁中12种杂质元素[J]. 冶金分析,2018,38(4):16-21 doi: 10.13228/j.boyuan.issn1000-7571.010293LIU Yuanyuan, HU Jingyu. Determination of twelve impurities in rodlike high-purity magnesium by glow discharge mass spectrometry[J]. Metallurgical Analysis,2018,38 (4):16-21. doi: 10.13228/j.boyuan.issn1000-7571.010293 [15] 张喜林, 钱亚锋, 孙志阳, 等. 电感耦合等离子体发射光谱法测定可溶性镁合金中高含量镍[J]. 化学分析计量,2023,32(7):17-20 doi: 10.3969/j.issn.1008-6145.2023.07.004ZHANG Xilin, QIAN Yafeng, SUN Zhiyang, et al. Determination of high content nickel in soluble magnesium alloys by inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage,2023,32 (7):17-20. doi: 10.3969/j.issn.1008-6145.2023.07.004 [16] 黄丹宇, 刘巍, 陶美娟, 等. 微波消解-电感耦合等离子体质谱法测定铬铁合金中的10种痕量元素[J]. 分析仪器,2021(2):23-27 doi: 10.3969/j.issn.1001-232x.2021.02.006HUANG Danyu, LIU Wei, TAO Meijuan, et al. Determination of 10 trace elements in ferrochrome by ICP-MS with microwave digestion[J]. Analytical Instrumentation,2021 (2):23-27. doi: 10.3969/j.issn.1001-232x.2021.02.006 [17] 黄丹宇, 陶美娟, 郅惠博. 电感耦合等离子体质谱法测定高纯铬中13种痕量元素[J]. 理化检验-化学分册,2021,57(8):759-763HUANG Danyu, TAO Meijuan, ZHI Huibo. Determination of 13 trace elements in high-purity chromium by ICP-MS[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis),2021,57 (8):759-763. [18] 冯先进, 屈太原. 电感耦合等离子体质谱法(ICP-MS)最新应用进展[J]. 中国无机分析化学,2011,1(1):46-52FENG Xianjin, QU Taiyuan. The latest application progress of inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry,2011,1 (1):46-52. [19] 刘巍, 吕婷, 陶美娟. 微波消解-电感耦合等离子体质谱法测定石墨烯粉末材料中19种痕量元素[J]. 理化检验-化学分册,2019,55(11):1318-1322LIU Wei, LV Ting, TAO Meijuan. ICP-MS determination of 19 trace elements in graphene powder materials with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2019,55 (11):1318-1322. [20] 陈忠颖, 刘巍, 郭颖. 电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J]. 理化检验-化学分册,2017,53(12):1416-1418CHEN Zhong-ying, LIU Wei, GUO Ying. Matrix effect in the ICP-MS determination of 21 elements in high purity iron[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2017,53 (12):1416-1418. [21] 詹胜群, 段勤勤, 黄缘, 等. ISO标准中基体效应对微波消解-ICP-MS测定奶粉中多元素的影响[J]. 中国食品添加剂,2022,33(9):217-225 doi: 10.19804/j.issn1006-2513.2022.09.030ZHAN Shengqun, DUAN Qinqin, HUANG Yuan, et al. The influence of matrix effect on the determination of multi-elements in milk powder by microwave digestion-ICP-MS using ISO standard method[J]. China Food Additives,2022,33 (9):217-225. doi: 10.19804/j.issn1006-2513.2022.09.030 -