扫码关注我们

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯片液相色谱-质谱法高灵敏度检测水产品中微囊藻毒素

卢巧梅

卢巧梅. 芯片液相色谱-质谱法高灵敏度检测水产品中微囊藻毒素[J]. 分析测试技术与仪器, 2019, 25(2): 65-71. doi: 10.16495/j.1006-3757.2019.02.001
引用本文: 卢巧梅. 芯片液相色谱-质谱法高灵敏度检测水产品中微囊藻毒素[J]. 分析测试技术与仪器, 2019, 25(2): 65-71. doi: 10.16495/j.1006-3757.2019.02.001
LU Qiao-mei. Sensitive Analysis of Microcystins in Aquatic Products by Nano-Flow Chip Liquid Chromatography-Mass Spectrometry[J]. Analysis and Testing Technology and Instruments, 2019, 25(2): 65-71. doi: 10.16495/j.1006-3757.2019.02.001
Citation: LU Qiao-mei. Sensitive Analysis of Microcystins in Aquatic Products by Nano-Flow Chip Liquid Chromatography-Mass Spectrometry[J]. Analysis and Testing Technology and Instruments, 2019, 25(2): 65-71. doi: 10.16495/j.1006-3757.2019.02.001

芯片液相色谱-质谱法高灵敏度检测水产品中微囊藻毒素

doi: 10.16495/j.1006-3757.2019.02.001
基金项目: 

国家自然科学基金 21705026

福建省自然科学基金 2016J01051

详细信息
    作者简介:

    卢巧梅(1983-), 女, 博士, 高级工程师, 从事食品安全、色谱分析、样品前处理等研究, Tel:0591-22867790, E-mail:luqm@fzu.edu.cn

  • 中图分类号: O657.63

Sensitive Analysis of Microcystins in Aquatic Products by Nano-Flow Chip Liquid Chromatography-Mass Spectrometry

  • 摘要: 建立了一种芯片液相色谱-高分辨质谱测定3种微囊藻毒素(MC-RR、MC-YR和MC-LR)的分析方法.在最优条件下,3种藻毒素在16 min内实现基线分离,并选择电喷雾源正离子模式进行质谱测定.方法在2.5~2 000 ng/mL范围内线性良好,线性相关系数大于0.996 5,检测限介于0.5~2.0 ng/mL之间.鱼肉和虾肉样品经固相萃取法净化处理后未测得上述毒素残留,加标回收率为82.8%~120.3%.方法具有样品用量少、定性快速准确、灵敏度高等优点,适合用于水产品等生物样品中藻毒素的痕量监测.
  • 图  1  MCs的化学结构(a)和芯片示意图(b)

    Figure  1.  Chemical structure of MCs (a) and schematic diagram of chip (b)

    图  2  不同流动相对分离的影响

    (a)乙腈-H2O,(b)乙腈-0.05% FA,(c)乙腈-0.10% FA,(d)乙腈-0.15% FA
    毛细管泵流速2 μL/min,10%乙腈等度洗脱;纳流泵流速600 nL/min,0~20 min,10-60% B相梯度洗脱进样体积l μL,进样冲洗体积为4 μL

    Figure  2.  Effects of different mobile phase on separation

    (1)MC-RR(0.5 μg/mL),(2)MC-YR(2.0 μg/mL),(3)MC-LR(1.0 μg/mL)

    图  3  不同梯度洗脱条件对分离的影响

    乙腈-0.15% FA;毛细管泵流速2 μL/min,10%乙腈等度洗脱;进样体积1 μL,进样冲洗体积为4 μL

    Figure  3.  Effects of different gradient elutions on separation

    (1)MC-RR(0.5 μg/mL), (2)MC-YR(2.0 μg/mL), (3)MC-LR(1.0 μg/mL)

    图  4  正离子检测模式下3种MCs的全扫描质谱图

    Figure  4.  Mass spectra of three MCs under full scan with positive mode

    表  1  3种MCs的保留时间和特征离子

    Table  1.   Retention time and characteristic ions of three MCs

    分析物 分子式 保留时间/min m/z[M+H]+ 偏差/δ m/z[M+2H]2+ 偏差/δ
    MC-RR C49H75N13O12 11.97 1 038.573 4 0.29 519.791 1 1.73
    MC-YR C52H72N10O13 14.08 1 045.539 4 3.92 523.272 4 2.10
    MC-LR C49H74N10O12 14.63 995.551 4 -4.62 498.283 3 3.21
    下载: 导出CSV

    表  2  3种MCs的分析参数

    Table  2.   Analytical parameters of three MCs

    分析物 线性范围
    /(ng/mL)
    相关系数 检测限
    /(ng/mL)
    日内RSDs /% (n=7) 日间RSDs /% (n=3)
    保留时间/min 峰面积 保留时间/min 峰面积
    MC-RR 2.5~500.0 0.999 4 0.5 0.22 2.85 0.55 4.09
    MC-YR 10.0~2 000.0 0.996 5 2.0 0.11 3.42 0.39 5.41
    MC-LR 5.0~1 000.0 0.998 2 0.8 0.19 4.24 0.41 6.81
    下载: 导出CSV

    表  3  水产品的加标回收率

    Table  3.   Spiked recoveries of aquatic products

    分析物 加入质量浓度
    /(ng/mL)
    测得质量浓度/(ng/mL) 回收率/% 测得质量浓度/(ng/mL) 回收率/%
    MC-RR 75.0 75.1±1.8 100.1 78.1±1.4 104.1
    MC-YR 300.0 324.0±4.3 108.0 248.4±5.2 82.8
    MC-LR 150.0 149.3±4.7 99.5 180.5±5.4 120.3
    下载: 导出CSV

    表  4  本法与HPLC相关方法比较

    Table  4.   Comparison of related HPLC methods

    检测方法 前处理
    方法
    进样体积
    /μL
    线性范围
    /(ng/mL)
    检测限
    /(ng/mL)
    样品基质 参考文献
    HPLC-UV 固相微萃取 10 1.0~200.0 0.15 (MC-RR), 0.45 (MC-LR) [4]
    HPLC-UV 磁性固相萃取 20 0.25~146.5 0.011 (MC-LR) [5]
    HPLC-MS/MS 基质固相分散 5 5.0~100.0 13.0 μg/kg (dw) 蔬菜 [6]
    HPLC-MS/MS 超声辅助萃取 5 2~500.0 0.78 (MC-RR), 0.12 (MC-YR), 0.20 (MC-LR) 螺类 [7]
    nano-flow chip HPLC-MS 固相萃取 1 2.5~2 000.0 0.5(MC-RR), 2.0 (MC-YR), 0.8 (MC-LR) 水产品 本文
    下载: 导出CSV
  • [1] 赵漫, 李冰, 马燕天, 等.应用环境微生物治理淡水湖泊微囊藻毒素污染的研究进展[J].微生物学通报, 2018, 45(4):893-899. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201804018

    ZHAO Man, LI Bing, MA Yan-Tian, et al. Advances in the application of environmental microbes to control microcystins in freshwater lake[J]. Microbiology China, 2018, 45(4):893-899. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201804018
    [2] Pham T L, Utsumi M. An overview of the accumulation of microcystins in aquatic ecosystems[J]. J Environ Manage, 2018, 213:520-529. doi: 10.1016/j.jenvman.2018.01.077
    [3] 钟力, 徐文琦, 胡静文, 等.微囊藻毒素的危害及其分析方法进展[J].分析化学进展, 2018, 8(3):91-102. http://d.old.wanfangdata.com.cn/Periodical/ahsfdx201401011

    ZHONG Li, XU Wen-qi, HU Jing-wen, et al. The harmful effects of microcystins and the analytical methods[J]. Advances in Analytical Chemistry, 2018, 8(3):91-102. http://d.old.wanfangdata.com.cn/Periodical/ahsfdx201401011
    [4] 吴伟文, 杨左军, 顾浩飞, 等.固相微萃取/高效液相色谱法测定水中的微囊藻毒素[J].分析测试学报, 2007, 26(4):545-547. doi: 10.3969/j.issn.1004-4957.2007.04.023

    WU Wei-wen, YANG Zuo-jun, GU Hao-fei, et al. Determination of trace microcystin in water by solid phase microextraction coupled with high performance liquid chromatography[J]. Journal of Instrumental Analysis, 2007, 26(4):545-547. doi: 10.3969/j.issn.1004-4957.2007.04.023
    [5] 郭亭秀, 娄大伟, 连丽丽, 等. Fe3O4@NiSiO3对水中痕量微囊藻毒素的萃取[J].分析测试学报, 2016, 35(9):1137-1141. doi: 10.3969/j.issn.1004-4957.2016.09.011

    GUO Ting-xiu, LOU Da-wei, LIAN Li-li, et al. Extraction of trace mierocystins in water using Fe3O4@NiSiO3[J]. Journal of Instrumen- tal Analysis, 2016, 35(9):1137-1141. doi: 10.3969/j.issn.1004-4957.2016.09.011
    [6] Qian Z Y, Li Z G, Ma J, et al. Analysis of trace microcystins in vegetables using matrix solid-phase dispersion followed by high performance liquid chromatography triple-quadrupole mass spectrometry detection[J]. Talanta, 2017, 173:101-106. doi: 10.1016/j.talanta.2017.05.079
    [7] Li S Y, Cui Y W, Wang Y, et al. A shotgun method for high throughput screening microcystins in margarya melanioides on a triple quadrupole tandem mass spectrometry[J]. Food Chem, 2018, 269:89-95. doi: 10.1016/j.foodchem.2018.07.004
    [8] Haghighi F, Talebpour Z, Nezhad A S. Towards fully integrated liquid chromatography on a chip:evolution and evaluation[J]. TrAC Trends Anal Chem, 2018, 105:302-337. doi: 10.1016/j.trac.2018.05.002
    [9] Yin H, Killeen K. The fundamental aspects and applications of agilent HPLC-Chip[J]. J Sep Sci, 2007, 30(10):1427-1434. doi: 10.1002/(ISSN)1615-9314
    [10] Li X J, Fekete A, Englmann M, et al. At-line coupling of UPLC to chip-electrospray-FTICR- MS[J]. Anal Bioanal Chem, 2007, 389(5):1439-1446. doi: 10.1007/s00216-007-1524-4
    [11] Zhang Y, Li Y Y, Qiu F, et al. Comparative analysis of the human urinary proteome by 1D SDS-PAGE and chip-HPLC-MS/MS identification of the AACT putative urinary biomarker[J]. J Chromatogr B, 2010, 878(32), 3395-3401. doi: 10.1016/j.jchromb.2010.10.026
    [12] Kozlik P, Sanda M, Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromato- graphy on a chip in the analysis of hemopexin glycopeptides[J]. J Chromatogr A, 2017, 1519(23):152-155.
    [13] Min J Z, Yano H, Matsumoto A, et al. Simultaneous determination of polyamines in human nail as 4-(N, N-dimethylaminosulfonyl)-7-fluoro-2, 1, 3-benzoxadiazole derivatives by nano-flow chip LC coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Clin Chim Acta, 2011, 412(1-2):98-106. doi: 10.1016/j.cca.2010.09.018
    [14] Zhu K Y, Leung K W, Ting A K L, et al. The establishment of a highly sensitive method in detecting ketamine and norketamine simultaneously in human hairs by HPLC-Chip-MS/MS[J]. Forensic Sci Int, 2011, 208(1-3):53-58. doi: 10.1016/j.forsciint.2010.10.028
    [15] Zhao C X, Wu Z M, Xue G, et al. Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis[J]. J Chromatogr A, 2011, 1218(23):3669-3674. doi: 10.1016/j.chroma.2011.04.020
    [16] 中华人民共和国卫生部. GB 5749-2006生活饮用水卫生标准[S].

    The Minister of Health of the People's Republic of China. GB 5749-2006 Standards for drinking water quality[S].
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  137
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-03-13
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回